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We investigate the half-filled Hubbard model on an isotropic triangular lattice with the variational
cluster approximation. By decreasing the on-site repulsion U (or equivalently increasing pressure) we go
from a phase with long-range, three-sublattice, spiral magnetic order, to a nonmagnetic Mott insulating
phase—a spin liquid—and then, forU & 6:7t, to a metallic phase. Clusters of sizes 3, 6, and 15 with open
boundary conditions are used in these calculations, and an extrapolation to infinite size is argued to lead to
a disordered phase at U � 8t, but to a spiral order at U * 12.
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The effect of geometric frustration on quantum magne-
tism is still a very active field of investigation. The quan-
tum Heisenberg model on a two-dimensional square
(bipartite) lattice exhibits long-range Néel order, but that
order is suppressed on an isotropic triangular lattice. In that
case, the classical ground state is a spiral configuration in
which the magnetization on each of the three sublattices is
oriented at 120� of the other two. For a while, it was
conjectured that quantum fluctuations around that classical
ground state would be strong enough to destroy this or-
dered pattern, but there is now a quasiconsensus that this is
not the case [1,2]. The latest Monte Carlo studies of the
quantum Heisenberg model on a triangular lattice point
towards a sublattice magnetization of m � 0:41 in the
ground state [2].

However, real antiferromagnets are better described by
the Hubbard model,

 H � �t
X
hiji;�

cyi�cj� �U
X
i

ni"ni#; (1)

where t is the hopping amplitude between neighboring
sites, ci� destroys an electron of spin � at site i, and U is
the on-site Coulomb repulsion. The Heisenberg model is
recovered in the strong coupling limit (U� t), with direct-
exchange constant J� 4t2=U. Finite-U effects are
potentially important on real systems to which the
Heisenberg model is usually applied. Such effects are often
incorporated as ring-exchange terms in spin models [3],
but their origin can be traced back to the Hubbard
model itself [4]. For instance, the organic conductor
�-�BEDT-TTF	2Cu2�CN	3 may be described by a
Hubbard model on an almost isotropic and half-filled
triangular lattice [5], and this material is conjectured to
be in a spin liquid (i.e., magnetically disordered and insu-
lating) phase [6]. So is the triangular antiferromagnet
EtMe3Sb
Pd�dmit	2�2 [7]. The question that arises in this
case is whether such a state is compatible with a Hubbard
model description. In this Letter, we will argue that it is,
i.e., that the Hubbard model on a triangular lattice exhibits

a spin liquid phase at intermediate values of U (e.g., U�
8) although it exhibits spiral magnetic order at stronger
coupling (e.g., at U � 12).

The Hubbard model on an anisotropic triangular lattice
has been studied by various methods. The 120� spiral state
has been studied in the mean-field approximation [8,9],
and a spin stiffness analysis points to a loss of order for
U & 6 [9]. In the isotropic case, slave-bosons methods
were used to obtain a phase diagram qualitatively similar
to the Hartree-Fock results [10], with a transition from a
metallic phase to a magnetic phase, with no intercalated
spin liquid phase. On the other hand, the presence of a Mott
phase was confirmed in Refs. [11–14], however without
confronting it with a spiral magnetic order.

In this work we use the (zero temperature) variational
cluster approximation (VCA) [15]. This method goes be-
yond mean field and takes into account exactly the effects
of strong short-range correlations. As U is increased, we
show that the system goes from a metallic phase to a
nonmagnetic, insulating phase (i.e., a spin liquid) at around
U � 6:7, and then to a magnetic, spiral phase at larger
values of U. Our treatment involves exact solutions of the
model on triangular clusters of 3, 6, and 15 sites, as well as
an extrapolation to infinite size.

The variational cluster approximation.—The VCA [16]
is a quantum cluster approach to the Hubbard model that
rests on Potthoff’s self-energy functional approach (SFA)
[15]. It has been applied, for instance, to the problem of
competing phases in the high-Tc cuprates [17] and in the
layered organic conductors [12]. The SFA involves a func-
tional �t
�� of the self-energy, parametrized by the one-
body terms collectively labeled by t, that is stationary at
the physical self-energy of the system: ��=�� � 0. The
SFA introduces a reference Hamiltonian H0, with the same
two-body interaction as the original Hamiltonian H, but
with a different one-body part, so that H0 may be solved
numerically. The functional �t
�� is then

 �t
�� � �t0 
�� � Tr ln�G�1
0 � �	 � Tr ln�G0�1

0 ��	;

(2)
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whereG0 andG00 are the noninteracting Green functions of
H and H0, respectively. At the physical self-energy, this
functional is the grand potential �.

In VCA, H0 is obtained from H by (i) tiling the lattice
into a superlattice of identical clusters, and removing all
intercluster hopping terms and (ii) introducing on the
clusters Weiss fields that allow for broken symmetry
phases. Then the Weiss fields (collectively denoted h in
what follows) are used as variational parameters and the
functional �t
�� reduces to a function �t�h	 given by

 �t�t0	 � �0 �
Z
C

d!
2�

X
K

ln det�1� �G�1
0 �G

0�1
0 	G

0�

(3)

where G0 is the exact Green function of H0, �0 the exact
grand potential of H0, and the sum is over wave vectors K
of the Brillouin zone of the superlattice. In practice, one
searches for the stationary points of the above function,
whose evaluation requires, at each point h, the exact solu-
tion of the Hamiltonian H0 defined on a finite-size cluster.
At these points, the self-energy � of H0 is considered an
approximation to the physical self-energy and is used to
construct the Green function G � �G�1

0 � �	�1 of the
lattice model. Thus, VCA provides us with an approximate
Green function of the system, allowing the calculation of
spectral and thermodynamic properties, both in broken
symmetry phases and normal phases.

In investigating broken symmetry phases, VCA is supe-
rior to static mean-field approaches in that it does not
require any factorization of the interaction, and short-range
correlations (within a cluster) are taken into account ex-
actly. The Green function obtained is still defined on the
infinite lattice. The only approximation comes from the
limited space of self-energies on which the variational
principle is applied, limited by the cluster size and by the
number of variational parameters used.

Clusters for the spiral order.—The Weiss field term
associated with the spiral magnetic order may be expressed
as H0h � hM̂, where

 M̂ �

�X
i2A

eA � Si �
X
i2B

eB � Si �
X
i2C

eC � Si

�
; (4)

where A, B, and C stand for the three sublattices of the
triangular lattice, as shown on Fig. 1 by different shades of
gray. The unit vectors eA;B;C are oriented at 120� of each
other, and the spin operator is Si � cyi;����ci;�.

The clusters used in applying VCA to the triangular
lattice are depicted on Fig. 1. They all have a triangular
shape and treat the three sublattices on the same footing.
Since the L � 6 and L � 15 clusters do not tile the lattice
by themselves, they are paired with their rotated
mirror image to define a true superlattice, in the Bravais
sense. More explicitly, the Green function G0 of the super-
lattice’s unit cell (the union of the cluster and of its

mirror image) is given by

 G0�1 � G0�1
1 �G0�1

2 � t12; (5)

whereG01 is the Green function of the cluster itself (site and
spin indices suppressed), G02 that of its rotated
mirror image (a simple transformation of G01) and t12 the
hopping matrix linking the two (dashed links on Fig. 1).

The variational parameters used in this work are the
Weiss field h multiplying M [see Eq. (4)] and the chemical
potential �0 of the cluster. Treating �0 as a variational
parameter instead of setting �0 � � ensures thermody-
namic consistency, i.e., that the densities obtained by cal-
culating n � TrG and n � �@�=@� coincide. Figure 2
illustrates the h dependence of �t�h;�0	 ��t�0; �0	 for
the value of �0 corresponding to the solution, for several
values of U and on a 3-site cluster. As one can see, a local
minimum exists as a function of h for U  5. h and �t
were divided by J � 4t2=U in order to emphasize the
strong-coupling scaling behavior.

The Newton-Raphson algorithm is used to locate the
values of h and �0 that make the function �t�h;�0	
[Eq. (3)] stationary. The self-energy obtained at that point
is then used to construct the approximate lattice Green
function. The spiral order parameterm, i.e., the expectation
value hM̂i divided by the number of lattice sites, is calcu-

FIG. 1 (color online). clusters used in our study. The 6-site and
15-site clusters tile the lattice only when paired with identical,
inverted clusters. Superlattice basis vectors are shown.

FIG. 2 (color online). Scaled Potthoff functional � as a func-
tion of Weiss field h for various values of U (3-site cluster). The
local minima are indicated by arrows.
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lated from that Green function as

 m � 2i
Z d2K

�2�	2
Z d!

2�
Gab�i!;K	Mba; (6)

where the frequency integral is taken along the positive
imaginary axis, and the sum over repeated indices is im-
plicit. a, b are composite indices including both cluster site
and spin: a � �i; �	. Mab is a matrix of real numbers
expressing M̂ as a one-body operator: Mabc

y
acb.

The calculation is performed for several values of the
lattice chemical potential � until the density n is close
enough to half-filling (n � 1). In practice, this is easily
accomplished when U is large enough for a spectral gap to
open (U � 6 and above).

The left panel of Fig. 3 shows the spiral order parameter
as a function of interaction strength U=t, for fixed cluster
size. The order parameter is seen, as expected, to saturate at
strong coupling. The transition from the magnetic to the
disordered state seems of first order, but the discontinuity
depends on cluster size and might disappear in the thermo-
dynamic limit; we could perform no quantitative analysis
on this matter.

The values found for the Weiss field h and the order
parameter m depend both on U and on cluster size. We are
naturally interested in the infinite-size extrapolation of
these, since an ordered solution found on a finite cluster
can disappear in the thermodynamic limit because of long
wavelength fluctuations of the order parameter. Such an
extrapolation is very difficult to do with the small clusters
at our disposal. Moreover, these clusters have open, not
periodic, boundary conditions. This implies that the num-
ber of sites of the cluster (L) is not the only scaling
parameter: the size of its boundary could also be signifi-
cant. We define a scaling parameter Q as the number of
links within the cluster divided by the total number of links

of the original lattice within a unit cell of the superlattice of
clusters. Q increases with cluster size and reaches unity in
the thermodynamic limit. It is equal to 1=3, 1=2, and 2=3,
respectively, for the 3-, 6-, and 15-site triangular clusters.

We expect the Weiss field to vanish in the thermody-
namic limit, as it is then no longer necessary to stabilize
order. If the Weiss field extrapolates to zero at Q< 1, this
is to be interpreted has a suppression of order due to long
wavelength fluctuations. Figure 4 displays the spiral Weiss
field as a function of bothQ and 1� 1=L for several values
of U, as well as the Néel Weiss field for several square-
lattice clusters at U � 16 and half-filling. The square-
lattice results show that Q is a better scaling parameter
than 1� 1=L since the values of the Néel Weiss field
neatly fall on a straight line. This line crosses the abscissa
very close to Q � 1, as it should since long-range Néel
order is expected in the square-lattice case. In the triangu-
lar case, however, the 3-site cluster is too small to be in the
scaling regime, and we must rely only on the 6- and 15-site
clusters to extrapolate towards Q � 1. Figure 4 shows that
the Weiss field extrapolates to zero very near Q � 1 for all
values of U studied except U � 8. Even though 1=L scal-
ing looks superficially better for triangular clusters, it
extrapolates beyond 1=L � 0 (except for U � 8).
Whatever the extrapolation scheme, we conclude that there
is no long-range order at U � 8. Thus long-range spiral
order is established somewhere between U � 8 and
U � 12.

The right panel of Fig. 3 shows the spiral order parame-
ter m as a function of the scaling parameter Q. A linear
extrapolation to Q � 1 yields m� 0:65, which is larger
than values obtained for the Heisenberg model by
Monte Carlo methods [2]. Thus, despite the extrapolation,
VCA still exaggerates the tendency of the system to order.
Indeed, a similar analysis for the square-lattice Néel order

FIG. 3 (color online). Left panel: U dependence of the spiral
order parameter for L � 3, 6, and 15. Right panel: Spiral order
parameter as a function of scaling parameter Q, for various U’s.
The U � 8 curve is a guide to the eye only. Left inset: Néel order
parameter as a function of U on a square lattice (12 sites). Right
inset: The same as a function of Q.

FIG. 4 (color online). Scaled Weiss field as a function of Q
(solid lines) and 1� 1=L (dashed lines) for various values of U.
The data are obtained for 3-, 6-, and 15-sites triangular clusters.
Top left panel: square-lattice results at U � 16 for the Néel
Weiss field, with L � 2, 4, 8, 10, 12, and 16 sites.
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(inset of Fig. 3) yields an extrapolated magnetization of
0.74, whereas the accepted value is closer to 0.61[18].
Therefore, if VCA predicts a magnetically disordered
state, it is very likely correct. Incidentally, it is impossible
to extrapolate the U � 8 order parameter to infinite size,
which is a further indication of the absence of order at
U � 8.

We now turn our attention to the Mott transition.
Figure 5(b) shows the density of states (DOS), calculated
by integrating the lattice Green function G�!;K	 over
wave vectors, for U � 8. The smooth curve is obtained
by giving the complex frequency an imaginary part � �
0:2t, equivalent to a Lorentzian broadening of the spectral
function delta peaks. The red (jagged) curve is the point-
wise extrapolation towards�! 0 of the DOS calculated at
� � 0:01, 0.005, and 0.002. This extrapolation allows for a
better numerical estimate of �. This estimate can be ex-
trapolated to infinite size (with the help of the scaling
parameter Q, see inset). The extrapolated values can be
plotted as a function of U to extract a critical value Uc for
the Mott transition [Fig. 5(a)]. We find Uc � 6:7.

To conclude, the system is predicted to be a metal for
U & 6, a magnetically disordered Mott insulator (or spin
liquid) at intermediate values of U, and a spiral magnet at
larger values of U (already at U � 12). A coexistence of
the latter two phases could occur if the transition between

the two were still of first order in the thermodynamic limit,
although we cannot conclude on the matter. This is in
contrast to the square-lattice model, in which the Mott
transition is preempted by Néel order down toU � 0 (inset
of Fig. 3).
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