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3D Short-Range Wetting and Nonlocality
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Analysis of a microscopic Landau-Ginzburg-Wilson model of 3D short-ranged wetting shows that
correlation functions are characterized by two length scales, not one, as previously thought. This has a
simple diagrammatic explanation using a nonlocal interfacial Hamiltonian and yields a thermodynami-
cally consistent theory of wetting in keeping with exact sum rules. For critical wetting the second length
serves to lower the cutoff in the spectrum of interfacial fluctuations determining the repulsion from the
wall. We show how this corrects previous renormalization group predictions for fluctuation effects, based
on local interfacial Hamiltonians. In particular, lowering the cutoff leads to a substantial reduction in the
effective value of the wetting parameter and prevents the transition being driven first order. Quantitative
comparison with Ising model simulation studies due to Binder, Landau, and co-workers is also made.
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Progress has recently been made towards resolving
problems in the theory of three-dimensional (3D) short-
ranged wetting [1-3] from analysis of a nonlocal (NL)
interfacial Hamiltonian [4—6]. Starting from a Landau-
Ginzburg-Wilson (LGW) model, it can be shown that the
interfacial binding potential contains two-body interfacial
interactions and also has a simple diagrammatic repre-
sentation [5,6]. The latter allows one to visualize the
binding potential as arising from tubelike fluctuations
that zigzag between the surfaces. Numerical and renormal-
ization group (RG) studies of critical wetting using the NL
Hamiltonian [4] are in better agreement with Monte Carlo
simulations of the transition in the 3D Ising model [2,3]. As
is well known, the latter reveal neither the strong nonun-
iversal criticality [1] nor the stiffness-instability behavior
[7] predicted using local interfacial Hamiltonians.

In this Letter, we highlight the specific mechanism by
which nonlocality resolves long-standing problems in the
theory of 3D wetting. From reanalysis of a LGW model,
we show that correlation functions are characterized by,
not one but, two diverging parallel length scales. Similar to
the binding potential, this also has a simple diagrammatic
explanation within the NL theory and shows how correla-
tions arise from the interaction of interfacial and tubelike
fluctuations. The appearance of a second diverging length
has important consequences: First, the NL model is ther-
modynamically consistent, satisfying an exact correlation
function sum rule due to Henderson [8]. Second, for criti-
cal wetting the second length lowers the cutoff of interfa-
cial fluctuations controlling the repulsion from the wall.
This simple mechanism pinpoints some inadequacies of
previous effective Hamiltonian studies [1,7]. In particular,
it prevents a stiffness instability [7], preserving the con-
tinuous nature of the transition, and leads to a lower,
effective value for the wetting parameter controlling the
nonuniversality implying that critical singularities are
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much closer to their mean-field predictions. This allows
positive comparison with the results of previously prob-
lematic Ising model simulations [2,3].

Imagine bringing a planar wall into contact with a bulk
phase «. In general, a microscopic layer of the preferred
phase 8 will intrude between the wall and the « phase. Ata
wetting transition [9-11], the thickness of this layer €
diverges. This situation occurs on approaching two-phase
coexistence and the wetting temperature 7,,, and may be
first order or continuous (critical wetting). Alternatively,
the divergence of € on approaching two-phase coexistence
for T > T, is termed complete wetting. As the film thick-
ens, a fluid interface between phases « and S is subject to
increasingly large fluctuations characterized by a parallel
correlation length &. For critical and complete wetting,
both € and & diverge continuously and are described by
critical exponents [11]. For systems with short-ranged
forces, the upper critical dimension for both transitions is
d = 3, and RG studies [1] of a standard (local) interfacial
Hamiltonian predict that critical wetting has strongly non-
universal critical singularities determined by the value of
the wetting parameter

o = kgT/4m3 &2, (1)

where 2 is the interfacial stiffness and &€ = 1/k is the
correlation length of the bulk S phase. For example, on
approaching T, at bulk coexistence, &~ (T,, — 1) "I,
where v)(0) = (V2 — Jw) 2 for 1/2 < w <2.

The ideal testing ground for this prediction is the Ising
model for which w = 0.8 close to T, [12] suggesting v =
3.7, much larger than the mean-field (MF) value v = 1. In
sharp contrast to this, extensive simulation studies by
Binder et al. [2] found only minor deviations from MF
theory, attributable to a much smaller effective value
wep = 0.27 £0.12, lying somewhere between MF and
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RG expectations [3]. The situation was confounded by a
further refinement of the model, incorporating a position-
dependent stiffness, due to Fisher and Jin [7] who predicted
that, paradoxically, fluctuations drive the transition first
order, in disagreement with the qualitative findings of the
simulations.

To continue, we return to the starting point of wetting
theory and, using a magnetic notation, consider a LGW
model [9,10] based on a magnetizationlike order parameter
m(r)

Him = [arf5@mp+ ol @

which has a bounding wall in the z = 0 plane. A double-
well potential ¢(m) describes the coexistence of bulk
phases @ and B where, in zero field, mg = —m, = my,
where mg is the spontaneous magnetization. The bulk
ordering field satisfies 4 = 0 so the bulk phase is «.
Minimization of (2) determines the MF equilibrium profile
(m) = m(z). With a fixed wall magnetization m = m, > 0,
the model exhibits critical wetting when m; = m(T,,).

Next consider the correlation function G(ry, r,) =
(m(r;)m(r,)) — (m(r;))(m(r,)) and its parallel Fourier
transform (FT) G, which, at MF level, satisfies

[—02 + ¢"(m(z)) + ¢*1G(z1, 22:9) = 8(z1 — 22), (3)

where we have set kzT = 1. This can be solved within the
double-parabola (DP) approximation ¢(m) = «?(|m| —
mgy)?/2 — hm, which is known to describe the physics of
continuous wetting transitions [6]. Within the DP approxi-
mation, the MF thickness [defined by m(€) = 0] is k€ =

In[—(#/2) + /(?/4) — h] where t = m;/my — 1 and h =
h/(my«?). This displays the well-known logarithmic diver-
gences of € at critical and complete wetting. The result for
G = G*"2 + G' separates conveniently into singular and
regular parts. The regular part contains no diverging length
scales while the singular term is found by calculation to be
[13]

Y(z1: Q) ¥(z2:q)
E(t;q)

where, in the relevant long wavelength limit (¢ < k),
W(z, q) = moke <=2 and

G"e(zy, 20:9) = “4)

E(€; q) = 2mok|h| + 2mi3e2le=a /x4 Tapd® (5)

Here, k, = \/k* + ¢* and 0,5 = m}k are the DP results
for the interfacial tension or stiffness. One finds from (4)
that the correlation function is determined by two diverg-
ing parallel length scales: the usual parallel correlation

length & = /o,p/E(€;0) and also ¢xp = +T€ < \/In.

For example, in the approach to critical wetting at coex-
istence, and near the interface

G((, €;0)
0Ll q) =~ ———F—, 6
G ¢:q) P (6)
where G({, €;0) = k*mgé}/ 0 qp, While near the wall
. 1 efngiL
G2(0,0;9) ~ — —55—— @)

22
2K ¢ quL—i—qzlzl

The wave-vector dependence of these correlation func-
tions, characterized by two diverging parallel length scales,
corresponds to a breakdown of simple scaling and is rather
revealing.

Before we discuss this, note that all the above is captured
by the NL model, which describes wetting for both planar
and nonplanar walls, and may be derived from the LGW
model [5]. A collective coordinate €(x) denotes the loca-
tion of a surface of isomagnetization m(r,) = 0 where
r, = (x, €) is an arbitrary point on the interface. Let ¢(x)
describe the shape of the substrate. A trace over irrelevant
fluctuations identifies H[€] = H [mz=][7] where mz(r) is
the profile that minimizes (2) subject to the boundary
conditions. For the DP potential, one finds

mz(r)—mg; = —my <E - k + >

(my— my) (z *K*"’) )

where the thick straight line denotes Green’s function
K(r) = ke *"/27rr and the wavy lines represent the inter-
facial configuration (top) and wall (bottom). A black dot on
a surface means one must integrate over all points on that
surface with the appropriate infinitesimal area element
(Fig. 1). The NL Hamiltonian is

H[€] = O-QBAQ,B + 2m0|]’l|VlB + WNL[€]’ (9)

where A,z and Vg are the interfacial area and the volume
of the B layer, respectively. The binding potential func-
tional has the diagrammatic representation

WNLMZMI—’_MX 4o

with geometry independent coefficients a; = 2to g, by =
0 4p- The structure of Wy is largely unchanged beyond

(10)

INTERFACE (  Integrated

Green’s functions —

fixed
= /d54/dsw K(rp—ry) K(ry—r)

SUBSTRATE 1/ integrated

FIG. 1 (color online).
pression.

Wetting diagram and its algebraic ex-
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DP and when coupling to a surface field is allowed,
although the values of a; and b, are slightly altered [6].
When the interface and wall are planar, Wy [€] =
AagW((), where W(€) = aje™** + bje < is the usual
binding potential function [1,11]. For more general inter-
facial configurations, the diagrams further simplify to

Z —/ds e
y - //dSIdSQ e 20 S (1153 0)

where € = [€(x;) + €(x;)]/2 and ds is the appropriate
infinitesimal area element at the interface. Here

1
2

1D

12)

S(x; ) = 1 e ¥ /4 (13)

TSNL

is an effective two-body interfacial interaction whose range
is the new length scale &y, discussed earlier. It is natural to
interpret &y = €/2 as the rms width arising from the
thermal wandering of a tube of length €.

The MF expression for G*"¢ can be recovered from the
interfacial correlation function (8€(x;)6€(x,)), where
8¢ = € — (£). Using the constrained profile (8) to recon-
struct magnetization correlations, we are led to a diagram-
matic formula for the correlation function G between two
points (open circles),

Gsing(rl, r2> ) ?’V\*\T
2 - 8Z1Zz

my

(14)

where the horizontal lines denote the equilibrium MF
positions of the interface and wall, while the thick line
and black dots are as before. The wiggly line represents
(6€(x,)64€(x,)) and, therefore, shows magnetization corre-
lations arising from the interaction between tubes and
capillary waves. The parallel FT of Eq. (14) leads to the
same expression for G*"¢ obtained in the Landau theory,
Eq. (4).

We are now in a position to reexamine some long-
standing problems of wetting theory. For complete wetting,
the correlation function near the wall is

h2

_2p
e 4 §NL’
2mok|h| + 04597

G*"e(0,0; g) o« (15)

which remains valid beyond MF. Expanding G(0, 0; g) =
Go(0,0) — g>G,(0,0) + ..., we find for the second mo-
ment

S"2(0,0) * Gop + 2molhl €Yy (16)
This precisely satisfies Henderson’s exact sum rule
sing

2 (0,0) * 0,5 + 0 [8], identifying correctly the sin-

gular contribution to the wall-a surface tension o*"¢ ~
h1n|h|. The latter term in G, is not captured by the stan-
dard local interfacial model since it does not include the
exponential damping appearing in the numerator of (15)
[14].

We now turn to critical wetting. The crucial observation
here is that £y serves to cut off the spectrum of interfacial
interactions that control the repulsion from the wall. This
can already be seen in the LGW model results (6) and (7)
for the MF correlation function. For example, near the
interface and for wave vectors in the range 1/&y, < g <
K, we find G({, €; q) = k*m}/ o ,pq*, which is the same as
for a free a B interface, independent of the presence of the
wall. Similarly, near the wall, the exponential damping
kills the singular contribution for ¢ = 1/&y;.. These effects
can be traced to the two-body interaction (13) controlling
the repulsion. The FT of the interaction is S (q) =
exp(—¢*&%y), which suppresses strongly the repulsion
for wave vectors g = 1/&y;.. We are now in a position to
critically reassess previous predictions for fluctuation ef-
fects [1,7]: (a) If we take the ultralong wavelength approxi-
mation S(g) = 1, Eq. (12) reduces to the local interaction
f dxe %<t  appearing in the original interfacial theory [1].
However, this approximation is only valid provided we
restrict wave vectors to g < Ay where Ay ~ 1/&nL 18
an effective momentum cutoff. This contrasts with the
original assumption [1] that ¢ < A, where A ~ k is the
high-momentum cutoff [which remains valid for the at-
tractive term (11)]. This implies that the renormalized
repulsion should be [13]

1 f‘” dte—2k1— (=222
V2w Jo

determined by a reduced width kK*w} = @ In(1 + &jAR,).

Equivalently, the wetting parameter controlling the renor-
malized repulsion takes a lower effective value

W of _ ln(l + gﬁAlz\IL)

R[e*2K€] ~

7)

~ 18
w In(1 + §ﬁA2) (18)
which, for thick wetting films, reduces to
In(x€
weffzw—~/2w3n(7K€)+---, (19)
K

where we have assumed that @ > 1/2 as appropriate to the
Ising model. (b) The same mechanism prevents the possi-
bility of a stiffness instability subsequently predicted for
models that allow for a position-dependent stiffness [7].
Indeed, the Fisher-Jin model can be recovered explicitly
from the NL theory if we approximate S(q) =~ 1 — ¢?&%;
[5]. Again, this is valid only for ¢ < Ay, ~ 1/&nL and
with this corrected cutoff the flow equations studied in [7]
no longer drive the transition first order. Importantly, the
NL theory preserves the Nakanishi-Fisher global phase
diagram showing first order, critical, and tricritical wetting
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FIG. 2 (color online). Effective value of the wetting parameter
as a function of the wetting thickness. Simulations of the
discretized local (triangles) and nonlocal (circles) interfacial
models were performed on an L X L grid. Here L is measured
in units of 3.1623/« [4]. The thick lines are guides for the eye.
The continuous and dashed lines are predictions of the contin-
uum approximation (18) for different A. The value of w.
obtained from Ising model simulations [3] is also shown
(square).

[10]. All these considerations are consistent with the more
detailed analysis based on the numerical renormalization
of the two-body interaction (13) given in [4].

It is this reduced value w that determines the singu-
larities of the first-layer magnetization and susceptibility
along the critical wetting isotherm, which were studied in
simulations of the Ising model [2] and NL Hamiltonian [4].
In Fig. 2, we plot wg vs the film thickness x¢ as obtained
from simulation studies and the above theory. In the simu-
lation studies of the interfacial models, w.; has been
extracted from the singularity of the surface magnetization
my ~ |h|'=1/271(@a) along the critical wetting isotherm.
This is more difficult for the Ising model, and we have
used the estimate taken from the surface susceptibility
critical amplitude [3]. As can be seen, the NL theory is
in better agreement with the Ising model simulation result
due to the slower crossover. Theoretical predictions for
w.¢r are also shown for different values of A. This is close
to the simulation findings and substantially lower than the
asymptotic critical value w = 0.8. It is interesting to note
that, within the NL model, w.y has a minimum value of
approximately 0.3 when the film thickness is approxi-
mately 5 bulk correlation lengths. For thinner wetting
films, the effective value actually increases. Similar quali-
tative behavior is found in Eq. (18). Unfortunately, in the

original Ising simulation studies, this regime corresponds
to wetting layers less than 1 or 2 lattice spacings for which
a continuum description is doubtful. However, this limita-
tion can be overcome in future simulations at temperatures
closer to T,, where the bulk correlation length is much
larger.

In summary, we have shown that 3D short-ranged wet-
ting transitions are characterized by two diverging parallel
length scales. The existence of a new length &y appears to
resolve long-standing puzzles in wetting theory. In particu-
lar, for critical wetting it suppresses long-wavelength in-
terfacial modes, implying that critical singularities are
necessarily much closer to mean-field predictions in keep-
ing with Ising model simulation results.
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