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The Gibbs free energies of bcc and fcc Mo are calculated from first principles in the quasiharmonic
approximation in the pressure range from 350 to 850 GPa at room temperatures up to 7500 K. It is found
that Mo, stable in the bcc phase at low temperatures, has lower free energy in the fcc structure than in the
bcc phase at elevated temperatures. Our density-functional-theory-based molecular dynamics simulations
demonstrate that fcc melts at higher than bcc temperatures above 1.5 Mbar. Our calculated melting
temperatures and bcc-fcc boundary are consistent with the Mo Hugoniot sound speed measurements. We
find that melting occurs at temperatures significantly above the bcc-fcc boundary. This suggests an
explanation of the recent diamond anvil cell experiments, which find a phase boundary in the vicinity of
our extrapolated bcc-fcc boundary.
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Extensive experimental work [1–6] and many theoreti-
cal studies [7–17] of the phase diagram of Mo have been
carried out. It has been established both theoretically [15]
and experimentally [5] that at low temperatures (T) Mo is
stable in the bcc phase up to a pressure (P) of about 7 Mbar
(1 Mbar � 100 GPa), where it transforms to the fcc phase.
Sound speed measurements in Mo under shock compres-
sion show that the Hugoniot first crosses a phase boundary
at P � 2:1 Mbar at an estimated T � 4100 K, and that it
crosses a second phase boundary at P � 3:9 Mbar at an
estimated T � 10 000 K [2]. The lower point was inter-
preted as a bcc-solid transition, while the higher point was
assumed to be melting. More recently, Errandonea et al.
obtained diamond anvil cell (DAC) data on the melting
temperature (Tm) of Mo to 1 Mbar [6]. Their DAC data are
inconsistent with the shock-wave (SW) data [2]. The DAC
melting curve has a very small slope—Tm varies from
2900 K at P � 0 to 3100 K at 1 Mbar—which approaches
zero at high P, whereas the SW data imply a mean slope of
�18 K GPa�1 over the P interval 0–4 Mbar. Extrapolation
of the DAC melt curve to 2.1 Mbar gives a melting T of
approximately 3300 K, which is near but somewhat below
the transition identified as solid-solid in the SW data.
Consequently, Errandonea et al. conclude that melting at
2.1 Mbar had been misinterpreted by Hixson et al. as a
solid-solid transition, and that the high-P transition re-
ported in [2] does not appear to be melting.

On the other hand, there are several reasons to question
these conclusions of Errandonea et al. First, it is possible
that the DAC Mo sample flows, not because of melting, but
because of internal nonhydrostatic stresses associated with

a solid-solid phase transformation [18,19]. Also we note
that observed or predicted T-induced solid-solid transitions
in a number of materials other than Mo have been reinter-
preted by the DAC technique [6] as melting; examples
include MgO [20–22], Fe [23–25], and Xe [26,27]. In
every case where a DAC melting curve exhibits an unusu-
ally low Clapeyron slope, there is independent evidence for
a T-induced solid-solid transition. Quite remarkably, when
theory does not predict a solid-solid transition, the theo-
retical and DAC melting curves are in very good agree-
ment, as is the case for NaCl [20], MgSiO3 perovskite [28],
SiO2 [29], Al2O3 [30], Al [31], and Cu [32], to name a few.
In view of these considerations, it is quite possible that
some, if not all, low-slope DAC melting curves are in fact
solid-solid phase boundaries. In particular, it is our con-
tention that the DAC melting curve of Mo at high P is
essentially a bcc-solid phase boundary [15], and that the
original interpretation of the SW data on Mo [2,4] is
correct.

Even though the low-T fcc phase field of Mo lies above
7 Mbar [15], we decided to compute the Gibbs free ener-
gies of the fcc and bcc phases over the P range 0–8 Mbar.
The free energies were calculated in quasiharmonic ap-
proximation within the framework of the frozen-core all-
electron projector augmented wave method [33], as imple-
mented in the Vienna ab initio simulation package (VASP)
[34]. The energy cutoff was set to 400 eV. Exchange and
correlation potentials were treated within the generalized
gradient approximation [35]. The semicore 4p states of Mo
were treated as valence. The integration over the Brillouin
zone (BZ) was based on the Monkhorst-Pack scheme [36],
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which specifies a fine grid of k points in the irreducible part
of the BZ. Relaxation procedures and force calculations at
zero T were carried out according to the Methfessel-Paxton
scheme [37], while accurate total energy calculations were
performed by means of the linear tetrahedron method with
Blöchl’s correction [38]. All necessary convergence tests
were performed; the total and free energies were converged
to within 0:5 meV=atom. The convergence of the vibra-
tional free energies of the fcc and bcc structures with
respect to the k point grid and the energy cut-off was
attained. The phonon frequency calculations were carried
out in the framework of the supercell approach using the
small displacement method described in detail in Ref. [39].
To maintain the high accuracy indicated above we used
3� 3� 3 supercells. Forces induced by small atomic dis-
placements were calculated using the VASP program. The
free energy was calculated as the sum of the electronic and
vibrational contributions. The equation of state was ob-
tained by accurate numerical interpolation of the calcu-
lated Helmholtz free energies using the Birch-Murnaghan
equation [40].

Under ambient conditions the fcc structure is dynami-
cally unstable, that is, imaginary frequencies are present in
its phonon spectrum. Under compression at low T the
imaginary frequencies decrease in magnitude and finally
disappear at about 350 GPa (V � 10:2 �A3), indicating that
the fcc structure becomes dynamically, though not thermo-
dynamically, stable. In addition, as P increases from zero,
the low-T free energy difference between the bcc and fcc
structures smoothly decreases to zero at roughly 7 Mbar. At
higher P, fcc is the more stable structure. It should be
stressed that both the bcc and fcc phases are dynamically
stable from 350 GPa to the highest P considered in this
Letter, namely, 850 GPa; hence, the free energies can be
calculated in the quasiharmonic approximation over this P
range. The difference of the calculated Gibbs free energies
is shown in Fig. 1. The corresponding bcc-fcc phase
boundary, which consists of two disjoint curves, is dis-
played in Fig. 2. The fcc structure occupies the lower right
region of the figure at P> 700 GPa. The other piece of the
bcc-fcc phase boundary running from approximately
(400 GPa, 6000 K) to (650 GPa, 7500 K) shows that fcc
is more stable than bcc at high T. This is consistent with
our fcc and bcc Tm calculations described below.

To check whether the relative stability of two solid
phases is affected by anharmonism we performed MD
simulations of melting of each of the two phases; the
structure with the higher Tm is the more stable phase. We
performed ab initio molecular dynamics (AIMD) simula-
tions with the same ab initio method as described above for
the phonon calculations.

The Tms of fcc Mo were calculated using the Z method
[41] (we have named it so because of the characteristic
Z-letter shape of the isochore) in the NVE (N number of
atoms, V volume, E energy) ensemble. In the Zmethod the

initial configuration of the system is solid, and its final state
lies on the isochore corresponding to its fixed volume.
Such an isochore consists of three pieces: (i) crystalline,
which in turn consists of two parts: a solid one, and a
superheated solid one that extends into the liquid region
of the phase diagram above the melting point, (ii) liquid,
and (iii) an intermediate piece with a negative slope that
corresponds to a transition from the highest superheated
solid state down to the melting curve. The equilibrium
melting point (Pm, Tm) is then bracketed by (Ps, Ts) and
(Pl, Tl), where the former corresponds to the highest state
on the solid part of the crystalline piece, while the latter to
the lowest state on the liquid piece, as attained in the AIMD
simulations. We take Pm � �Ps � Pl�=2 and Tm � �Ts �
Tl�=2 with errors bars �Pm � �Pl � Ps�=2 and �Tm �
�Tl � Ts�=2. The Z method is described in detail in
Ref. [41], where it was developed and carefully tested. It
is important to note that the Z method is different from the
so called ‘‘heat-until-it-yields’’ ([42]) method in that the
latter does not allow one to eliminate the effect of
superheating.

We performed AIMD simulations for a 108-atom (3�
3� 3 unit cells) fcc system at three volumes: 17.23, 12.66,
and 9:826 �A3=atom. The corresponding Ps at high T (close
to Tm) are equal to approximately 5, 130, and 400 GPa,
respectively. At each volume we performed simulations for
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FIG. 1 (color online). The difference of the Gibbs free energies
of the bcc and fcc phases of Mo as a function of pressure for
several temperatures. A positive difference indicates that the fcc
phase is more stable.
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several initial Ts in order to closely bracket the Tms. The
time step in our simulations was 1 fs, and the energy drift
with such a small time step was negligible. In each of the
simulations equilibrium was achieved in 2500–3000 time
steps. Ps were calculated as time averages over additional
MD runs of a few hundred time steps performed after the
systems had already reached equilibrium. The results of
these simulations are shown in Fig. 2. Fitting the well-
known Simon form to our 108-atom, AIMD data yields our
fcc Mo melting curve (P in GPa, Tm in K)

 Tm�P� � 2585
�
1�

P
44:0

�
0:61
: (1)

The dependence of Tm on system size was checked by
performing additional simulations for both 64-atom (con-
structed as a 4� 4� 4 60-degree simple rhombohedral
cell) and 32-atom (2� 2� 2 unit cells) fcc systems, at
17:23 �A3=atom (P� 5 GPa) and 8:984 �A3=atom (P�
570 GPa), and 8:582 �A3=atom (P� 660 GPa), respec-
tively. Size effects turn out to be negligible: the low-P
108-atom and 64-atom results overlap within uncertainties,
and both the high-P 64-atom and 32-atom points lie very
close to the 108-atom melting curve, Eq. (1); see Fig. 2.

We also performed three AIMD simulations of a
54-atom (3� 3� 3 unit cells) bcc system, a single simu-
lation of both 64-atom (constructed as a 4� 4� 4
109.5-degree simple rhombohedral cell) and 128-atom
(4� 4� 4 unit cells) bcc systems to check for size ef-
fects, and a 2-phase simulation of a 108-atom (54-atom
solid plus 54-atom liquid) bcc cell to check for consistency
of the Z and 2-phase methods. Simulations were performed
at volumes of 17.97, 13.50, and 9:842 �A3=atom for the
54-atom system, 8:992 �A3=atom for the 64-atom system,
and 10:98 �A3=atom for the 128-atom system. The corre-
sponding Ps are equal to about �3, 90, 390, and 560, and
250 GPa, respectively. The 2-phase 108-atom system was
simulated at 13:50 �A3=atom (P� 90 GPa). The results of
these simulations are also shown in Fig. 2. They demon-
strate that (i) both Z and two-phase methods are indeed
consistent with each other, and (ii) as for fcc, the bcc size
effects are negligible. Our bcc melting curve Tm�P� �
2894�1� P

35:0�
0:47 is in good agreement with that recently

calculated by Cazorla et al. [16], Tm�P� � 2894�1�
P=37:2�0:43, which gives bcc Tms �10% lower than ours
at high P. Comparison of our fcc and bcc melting curves
shows that fcc melts at higher T than bcc at high P, which
means that it is more stable than bcc, in agreement with our
quasiharmonic phonon calculations discussed above.

Using the results of recent shock-wave experiments and
previous theoretical studies [43,44], we obtained the fol-
lowing analytic form for the Mo Hugoniot, TH�P� �
293� 0:424 � P1:688 (to 5 Mbar), which is shown in
Fig. 2, along with the corresponding 16% error bars at
the transition Ps of 2.1 and 3.9 Mbar [2].

A linear extrapolation of the high-T bcc-fcc boundary to
lower P passes very close to the bcc-fcc shock-wave point,
though it remains somewhat below. We note, however, that
the actual bcc-fcc boundary may be lower than that calcu-
lated in the quasiharmonic approximation because of an-
harmonicity. In view of the uncertainty in the estimated T
of the solid-solid transition point on the shock Hugoniot
and anharmonic corrections to our calculated bcc-fcc
boundary, the agreement between our AIMD-based melt-
ing curves, our quasiharmonic bcc-fcc boundary, and the
shock-wave data is very good. The solid-solid transition on
the Hugoniot might in fact involve a phase more stable than
fcc, in which case the transition T would be lower, as in
Fig. 2.

In summary, using well established methods we dis-
covered that the Mo fcc melting curve lies above the bcc
one at P * 1:5 Mbar, and therefore fcc is more stable than
bcc at elevated T and P. This is quite consistent with our
quasiharmonic calculations for the bcc-fcc boundary,
which makes our findings very robust. Other crystal struc-
tures may have even higher Tm than fcc but our work, for
the first time, conclusively demonstrates that there is at
least one other solid phase above the bcc stability field at
high P.
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FIG. 2 (color online). Data on the phase stability of Mo. The
bcc-fcc phase boundary was constructed using the results shown
in Fig. 1. Circles, diamonds, triangles and squares represent
melting conditions obtained from AIMD for bcc and fcc Mo;
the legend indicates the number of atoms in the AIMD simula-
tion; except one point (bcc, 2-phase method) the Z method was
used. Unless shown explicitly, the error bar is smaller than the
size of the corresponding symbol. Our fcc and bcc melting
curves obtained from AIMD simulations are shown as solid
thick and thin curves, respectively. The two points with tem-
perature error bars are the solid-solid and solid-liquid transitions
as measured in shock-wave experiments [2,4]; the corresponding
phases on the Hugoniot are shown as a solid curve (bcc phase),
long dashed curve (another solid phase), and short-dashed curve
(liquid).
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