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We explore the impact of the short-range interaction on the scattering of ground state polar molecules
and study the transition from a weak to strong dipolar scattering over an experimentally reasonable range
of energies and electric field values. In the strong dipolar limit, the scattering scales with respect to a
dimensionless quantity defined by mass, induced dipole moment, and collision energy. The scaling has
implications for all quantum mechanical dipolar scattering. Furthermore the universal scattering regime
will readily be achieved with polar molecules at ultracold temperatures.
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Collisional control in ultracold atomic physics has led to
the study of many remarkable systems such as ultracold
molecules [1] and the BEC-BCS crossover [2]. Recently,
collisional control of chromium has been achieved [3],
resulting in a clear demonstration of magnetic dipole-
dipole interaction [4]. Other experiments are rapidly pro-
gressing towards the production of ground state polar
molecules (GPMs), which have large permanent electric
dipole moments. These interact via the dipole-dipole in-
teraction:

 V�� �
�̂1 � �̂2 � 3�R̂ � �̂1��R̂ � �̂2�

R3 ; (1)

where �̂ is the electric dipole moment of a molecule and R
is the intermolecular separation. Because this interaction is
long-range and anisotropic, its incorporation into many
body systems has led to exciting predictions such as dipo-
lar crystals in restricted dimensions [5] and rotons [6,7].
There are also many intriguing applications of GPMs, such
as quantum computing [8,9].

Many different techniques are being used to obtain
GPMs [10], most notably is photoassociation. The photo-
association experiments are nearing production of ultra-
cold polar 1� molecules in their absolute ground states for
a range of different heteronuclear alkali-metal systems
[11–13]. 1� molecules are relatively simple; only the rota-
tional structure needs to be accounted for to study the
collisions accurately.

To set the scene, first consider ultracold atomic systems,
where collisions are parametrized by the scattering length
as. At a Feshbach resonance the scattering threshold be-
comes degenerate with a molecular state, leading to a
divergence of as. Thus the magnetic Feshbach resonance
allows tuning of the interaction, but this is solely a short-
range affair. Furthermore, the only important scattering is s
wave, unless there is another resonant partial wave; e.g.,
see Ref. [14]. This scenario is in direct contrast to dipolar
scattering as will be shown.

For weakly dipolar systems, such as chromium, as plays
a significant role in determining the dynamics of the sys-
tem. Chromium experiments are now exploiting Feshbach
resonances to tune as near zero; so dipolar interactions are
dominant, and in some cases leading to dipolar collapse
[4]. In contrast, for strong dipolar scattering the short-range
interactions can play only a minor role in determining the
scattering properties even at ultracold temperatures.

In anticipation of these molecular systems, we have
studied the scattering of 1� GPMs over a wide range of
electric fields and collision energies to determine the in-
fluence of the short-range interaction. This work shows the
scattering of dipoles is only weakly influenced by the
short-range interaction. We also see the emergence of a
universal scaling of dipolar collisions which has implica-
tions for all quantum mechanical scattering dipoles.

To understand Eq. (1) more clearly, consider the inter-
action in its asymptotic form in the lowest threshold con-
taining two GPMs. This is achieved when R is large, and so
couplings to higher thresholds are negligible. This distance
is quite large, typically greater than 100a0 for GPMs,
where a0 is the Bohr radius. The long-range interaction
is proportional to the induced dipole moment, and this
requires a nonzero electric field. For simplicity of notation
we use d to denote the induced dipole moment created by a
field along the z axis; it is the expectation value of the
dipole moment of the field dressed ground state. With these
assumptions, the dipole-dipole interaction has the form
d2

R3 �1� 3cos2����, where � is the angle between R and ẑ.
The anisotropy and long-range nature of the interaction
induce significant scattering contributions from nonzero
partial waves [15–17]. Furthermore, the long-range nature
of the interaction alters threshold behavior. The Born
approximation predicts that all partial wave cross sections
are constant as the collision energy goes to zero [18].

The characteristic length and energy of a dipolar system
are defined in terms of mass m (or twice the reduced mass)
and the induced dipole moment d, and they are D �
md2=@2 and ED � d2=D3 � @

6=m3d4, respectively. With
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the scattering energy, we form a dimensionless quantity
� � E=ED � m3d4E=@6 which parametrizes the scatter-
ing. At a fixed field it is the dimensionless energy of the
system. To report the electric field values at which the
scattering calculations were performed, we use a character-
istic electric field E0, which is determined by B=�where B
is the rotational constant of the 1� GPMs.

To study the GPM systems we determine the total cross
section �, which is

 � �
2�

k2 T �
2�

k2

�X
Mij

jT�M�ij j
2

�
; (2)

where T�M�ij is the T matrix which details the collisions
leading to a transfer from channel i to j for a system with
azimuthal symmetry M about the field axis [19]. k is the

wave number
���������������
mE=@2

p
. The factor of 2 in Eq. (2) is there

for only initially identical scatters. In this Letter we assume
identical bosons unless stated otherwise. We perform scat-
tering calculations for several polar molecules to obtain T
and �. These are extremely large computational tasks due
to the large number of partial waves and total M’s required
to converge the calculation because of the anisotropy and
long-range nature of Eq. (1). The details are presented in
Ref. [17]. Here we have added a Lennard-Jones potential
and vary the inner wall to alter the zero field scattering
length. The minimum of this short-range potential Rmin is
typically 10a0 and much deeper than V���Rmin�, thus
changing the character of the scattering potential. In zero
field (d � 0) the GPMs scatter similarly to atoms and are
parametrized by as.

An estimate of the total cross section is achieved with a
semiclassical approach. This approach offers scaling of �
on the physical parameters of the system, such as d,m, and
E [20,21]. Another important cross section is the quantum
unitarity limit, which provides a maximum value for any
single partial cross section. This occurs when the T matrix
takes on its maximum value of 4. These cross sections are

 �SC � d2

����
m
E

r
cSC; (3)

 �Q �
8�
mE

cQ; (4)

where cSC � 1:7� 10�13 and cQ � 4:85� 10�15 are
chosen so that the units of �, m, E, and � are [D],
[a.m.u.], [K], and [cm2], respectively. As energy goes to
zero, �Q will be larger than �SC, and the system will
exhibit threshold behavior. Then � will depend on the
short-range interaction; however, it will have many partial
wave contributions and will generally be large.

To begin the analysis we illustrate the influence of the
short-range interaction as the electric field is varied. We
have calculated � of RbCs [22] as a function of energy for
many different electric fields and with different values of

as. Figure 1(a) shows the total RbCs cross section versus
energy at electric fields of 0.5 (black), 1 (red), 2 (blue), and
5 (brown) E0 . For each electric field there are 7 different
values of as shown ranging from �650 to 500a0. The
difference between these calculations at a given electric
field is only the inner wall coefficient, and the calculations
are identical for R> Rmin. The variation between calcula-
tions is due solely to the difference in short-range potential,
and therefore these calculations directly access the influ-
ence of the short-range potential on the dipolar scattering.
The essential result of this figure is that at high electric field
and high energy or large � (brown) the scattering is in-
sensitive to the short-range interaction. This is in contrast
to low electric field and low energy or small � (black),
where there is great variation in the scattering due to
different phases acquired at short range.

To study this figure in detail, first we look at the weak
field results (black), small �. The GPMs are able to access
the short-range interaction and therefore scattering is sen-
sitive to this process. The cross section can be resonantly
large because �Q > �SC [17], and these resonant varia-

FIG. 1 (color online). (a) The variation of the cross section for
many different electric fields with different short-range poten-
tials. Different fields correspond to sets of colored curves; in
ascending order the fields are 0.5 (black), 1 (red), 2 (blue), and 5
(brown) E0. (b) The average total cross section, ��, (black) for
various field values (in ascending order 0.5, 0.75, 1, 1.5, 2, 3, 4,
and 5 E0) and the variations, ��, about �� (blue with circles). In
both plots the red dashed line is �Q and the green dash-dotted
line is proportional to E�1=2 as suggested by �SC.
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tions can dominate the scattering. As the electric field is
increased to 1 (red) and 2 (blue) E0, the cross section
becomes larger and the variation in the scattering cross
section becomes relatively small; this is most evident at
high energy. Finally, at a large electric field, 5 E0 (brown),
the cross section is very large and there is only slight
variation. The dipole-dipole interaction has induced large
numbers of nonzero partial waves to the scattering; we note
�	 �Q. These nonzero partial waves are insensitive to
the short-range interaction. This fact severely constrains
the resonant control of the scattering as has been seen in
ultracold atoms with magnetic Feshbach resonances.

To extend the analysis, we have averaged � over the
different short-range interactions at each field to obtain ��,
which is shown in Fig. 1(b). In ascending order the fields
for �� are 0.5, 0.75, 1, 2, 3, 4, and 5 E0 (black). We have also
obtained the variation of the total cross section ��, ��2 �
1
Na

PNa
a�1��a � ���2. The variations in � are shown in

Fig. 1(b) as blue full circles. The largest variations occur
from resonant scattering of a partial wave, and have a
maximum contribution of �Q. So it is reasonable to expect
��
 �Q. This leads to an interesting comparison, in the
large � limit, which is

 

��
�


�Q
�SC
/

1

d2
����
E
p : (5)

This offers a more explicit statement of why for large �
there is minimal influence of the short-range interaction.

Once the short-range interaction is negligible compared
to the long-range interaction (large �), it is instructive to
rescale the multichannel radial Schrödinger equation using
the length scale D. Including only the long-range influen-
ces of kinetic energy and the dipole-dipole interaction, one
finds that the only parameter left in the set of equations is
�. Performing the rescaling we find

 

�
d2

dy2 �
l�l� 1�

y2 � �
�
 �M�l � �

X
l0

C�M�ll0

y3  �M�l0 ; (6)

where y � r=D and  �M�l is a multichannel radial wave
function. The coupling between partial waves CMll0 is well
known [23]. Since Eq. (6) only depends on �, it suggests
universal scaling of dipolar scattering. To illustrate this
behavior we have compiled scattering data from many
different molecular systems. In Fig. 2 we have plotted T
as a function of � for 87Rb41K (black �), fermionic
87Rb40K (black +), NaCs (brown �), and RbCs (red �),
which is the data in Fig. 1(a) [22]. The molecular parame-
ters are

Molecule � [D] B [K] m [a.m.u.] E0 [V=cm]

RbCs 1.30 0.0245 220 780
RbK 0.76 0.055 128 or 127 3000
NaCs 4.60 0.073 156 660

A line proportional to � is shown as a blue line with
triangles. This line represents a cross section in the thresh-
old regime, which is constant as E! 0 for a fixed field.
The figure shows the transition in the scattering from
highly variable at low �, where the scattering depends on
short range, to uniform at large �. This transition of T
signifies the onset of universal dipolar behavior. This will
occur when the dipolar interaction is dominant and the
scattering will be insensitive to the short-range interaction.
For this reason different molecules, even bosons and fer-
mions, have the same scattering behavior.

In Eq. (4), �Q is defined by the T matrix taking on its
maximum value of 4. For the same reason as ��
 �Q, we
find �T 
 4 for all scattering. For small �, the scattering
can access the short range and therefore resonant scattering
is significant and so are the details of the short range. This
is seen by the great variation in the scattering data for � <
200. The transition to universal scattering behavior is seen
as � is increased above 200. The possible values of T
initially span a wide range, but this span greatly decreases
at high �. This is due to large contributions from many
nonzero partial waves; so typical values of T are much
greater than the variations of any single term.

The universal dipolar behavior is clearly seen as the
scattering of the dipoles becomes uniform at high �.
Fitting T at large �, we find

 T � 0:266
���
�

p
: (7)

This is shown in Fig. 2 as a blue line with full circles. This
result was obtained by fitting all RbCs and NaCs data from
� � 104 to 106, i.e., 458 scattering calculations. This sim-

FIG. 2 (color online). The transition of dipolar scattering to a
universal behavior is shown by plotting T vs � for many polar
molecules. The molecules are 87Rb41K (black �), fermionic
87Rb40K (black +), NaCs (brown �), and RbCs (red �). The
unitarity limit is 4, and is denoted by the dashed line. The blue
line with triangles is proportional to �. The inset is the T
obtained from the experimental cross section for Rydberg atoms
from Ref. [21], and the blue line with open circles is the
thermally averaged Eq. (7).
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ple equation offers an estimate of T and � for all quantum
mechanical scattering dipoles.

For large �, dipolar systems obey a universal scaling,
where all scattering dipoles will behave similarly irrespec-
tive of the details of the short range. This implies the
dipoles can be bosons, fermions, identical, or distinguish-
able, and the theory will apply. A striking example of this
theory being applied is an experimental measurement of
the cross section for resonant collisions of Rydberg atoms
[21]. In this experiment two identical Rydberg atoms in the
ns state, where n (s) is the principal quantum number
(orbital angular momentum), are resonantly scattered into
a degenerate threshold to which it is coupled via the dipole-
dipole interaction. For a particular electric field, the ns�
ns threshold becomes degenerate with the np� �n� 1�p
threshold. This system has huge dipole moments d / n2,
e.g., consider n � 22, the dipole moment is about 100D.
Numerically converging this calculation would be impos-
sible with the present computational techniques. But using
the scaling presented here we can obtain an accurate esti-
mate of the total cross section.

The inset of Fig. 2 contains the T obtained from the
experimental cross section (squares) for sodium Rydberg
atoms [21]. The blue line with open circles is Eq. (7) with

an additional factor of
�����������
�=23

p
to account for thermal

averaging of collisions in a beam [24]. To calculate the
values of � for the experimental data we use d � 0:6n?2,
where n? is the effective quantum number, and an aver-
age collisional velocity of �v � 1:6� 10�4 a:u: (T �
m
2 �v2 
 170 K). The agreement of the slope is not surpris-
ing [20,21], but agreement of the magnitude is quite good.
There has never been a means to determine the amplitude
with accuracy. The coefficient in Eq. (7) allows us to
accurately predict the cross sections for all scattering di-
poles. The limit of this theory is when other physics
emerges and alters the form of Eq. (6). For example, in
dense systems, other molecules will become important
before the two scattered molecules leave the scattering
volume.

With the growing importance of cold polar molecules
accurate and yet simple theories to understand their colli-
sions will be important. Here we have studied the collisions
of ultracold ground state polar molecules for experimen-
tally accessible energies and fields. We have illustrated the
limited influence of the short-range interaction in the pres-
ence of strong dipolar interactions. We have also rescaled
many different scattering calculations, finding strong dipo-
lar collisions are parametrized by � � m3d4E=@6. For our
calculations � ranges up to 106. This is well into the region
of universal dipolar scaling, and therefore we were able to
determine Eq. (7) with accuracy. Consequently we are able
to estimate cross sections for quantum mechanical dipolar

systems which are far beyond our current computational
capabilities. Furthermore the universal scattering regime
will be readily achieved in GPM experiments. Consider
collisions of RbCs (NaCs) at ultracold energies of 500 nK
with a modest field of 5 kV=cm; � is 230 (14 570), which is
(deeply) in the universal dipolar regime.
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