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We present a general and systematic electronic structure theory of the nuclear magnetic resonance
shielding tensor and the associated chemical shift for paramagnetic atoms, molecules, and nonmetallic
solids. The approach is for the first time rigorous for an arbitrary spin state as well as arbitrary spatial
symmetry and is formulated without reference to spin susceptibility. The leading-order magnetic-field
dependence of shielding is derived. The theory is demonstrated by first principles calculations of
organometallic molecules.
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Nuclear magnetic resonance (NMR) [1,2] is the princi-
pal analytical tool for the structure and dynamics of micro-
systems in chemistry and materials science, with a wealth
of applications in applied fields such as biology and medi-
cine. NMR is typically applied on closed-shell molecules
and solids, while systems with unpaired electrons are
routinely investigated with electron spin resonance (ESR)
[3,4]. NMR of paramagnetic, open-shell states [5] (PNMR)
is nevertheless gaining importance in, e.g., systems with
integer electron spin S or small hyperfine coupling (HFC),
where ESR information is scarce.

The theory of closed-shell NMR parameters, the shield-
ing tensor �K and the spin-spin coupling tensor JKL,
where K and L denote paramagnetic nuclei, was estab-
lished in the seminal papers by Ramsey [6]. Reviews of the
current theory and electronic structure methods of the
calculation of these parameters are given in Refs. [7–9].
In contrast, the field of first-principles theory and calcu-
lations of PNMR parameters is still in its infancy. Unlike
the Ramsey theories that consider a pure electronic state, in
PNMR a thermally populated ensemble of electronic
Zeeman states is involved.

The first consistent quantum-chemical calculations of
the PNMR chemical shift � � �ref � �, with � and �ref

the isotropic shielding constant in the investigated and
reference molecules, respectively, were published for the
doublet electronic state in Ref. [10]. This work included
the nonrelativistic (NR), O��2� limit [11] composed of an
orbital contribution analogous to the closed-shell case [6]
as well as temperature-dependent hyperfine terms arising
from the average Fermi contact (FC) and spin-dipole (SD)
interaction in the Zeeman-split ground-state multiplet.
While the SD term is a second-rank anisotropic contribu-
tion, the FC term gives rise to the isotropic contact shift
[12]. Moon and Patchkovskii [13] presented a theory for
S � 1

2 states featuring the spin-orbit (SO) interaction con-
tributions via the electronic Zeeman effect as parametrized
with the g tensor, introducing effects such as the aniso-
tropic contact and isotropic pseudocontact terms [14]. The
latter is of central importance for the structure determina-

tion in paramagnetic metallo-organic molecules. The
present authors [15] introduced SO corrections to the
HFC tensor, A (Ref. [16]), and presented calculations of
the thus extended Moon-Patchkovskii theory for main-
group radicals and S � 1

2 metallocenes.
An approximate a posteriori extension to the S > 1

2 case
[17] solved for the spin states in the presence of the
Zeeman and zero-field splitting (ZFS) Hamiltonians, and
formulated � via the intermediate observable of spin sus-
ceptibility [5]. Ref. [17] was limited to cylindrically sym-
metric systems.

Here we derive a rigorous and systematic a priori theory
for PNMR shielding for arbitrary S and spatial symmetry,
where no assumptions about the magnitudes of ZFS and g
tensor components or the mutual orientation of their prin-
cipal axes are necessary. This leads to a formal expression
for � similar in spirit to that of Ref. [13], requiring solving
for the electronic sublevels in the limit of vanishing mag-
netic field B0. We formulate the leading-order, quadratic
field dependence of �. The field-independent part of the
PNMR chemical shift is demonstrated by density-
functional theory (DFT) calculations on metallocenes and
a nonaxial model compound.

We adopt the starting point of Moon and Patchkovskii
and equate the shielding term in the NMR spin
Hamiltonian with a Boltzmann average of electronic en-
ergy terms bilinear in B0 and the nuclear spin I:

 �
X
��

B0;����I� �

P
n En�B0; I� exp��Wn�B0; I�=kT�P

n exp��Wn�B0; I�=kT�
;

(1)

where �, � denote Cartesian components, � is the gyro-
magnetic ratio of the investigated nucleus, and n denotes
the relevant electronic states that consist of the ground-
state spin multiplet as well as those of any low-lying
excited electronic states. En � hnjEjni is an expectation
value of energy, which can be expanded in a power series
of the components of B0 and I as [18]
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Equation (2) is limited to terms up to linear in I.

An expansion similar to that of En can be applied
to Wn, with an important simplification. The NMR
signal is caused by transitions between the Zeeman
states of the nuclear spin that occur at a much longer
time scale than the electronic transitions that estab-
lish the equilibrium population distribution among the
states n. Consequently, we may omit from Wn the terms

referring to I, leaving W���...;0�
n in the Boltzmann factors of

Eq. (1).
We multiply both sides of Eq. (1) by the partition

function
P
n exp��Wn�B0; 0�=kT� to obtain [19]

 �
X
��

B0;����I�
X
n

exp��Wn�B0; 0�=kT� �
X
n

En�B0; I� exp��Wn�B0; 0�=kT�: (4)

The leading term in the expansion of Wn is by far the largest [20] and we may approximate
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Finally, ��� can be written as a power series in B0, as [21]

 ��� � ��0��� �
1

3!

X
��

��2�����B0;�B0;� � . . . : (6)

Only even powers appear due to time-reversal invariance.
The coefficients of the expansion (6) may now be solved

for order by order from Eq. (4) [22]. For the field-
independent shielding we obtain, as in Ref. [13],

 ��0��� �
1

�
hE��;��i0 �

1

�kT
hW��;0�E�0;��i0; (7)

 hAi0 �

P
nhnjAjni exp��Wn�0; 0�=kT�P

n exp��Wn�0; 0�=kT�
: (8)

A lengthy expression deposited in EPAPS [23] is obtained
for the leading-order, quadratic B0-dependence.

At this point the separate notation for W and E is no
longer required and these quantities may be associated
with the ESR spin Hamiltonian
 

HESR � ��B0 	 �1� �orb� 	 I��BB0 	 g 	 S

� S 	A 	 I� S 	D 	 S; (9)

including the nuclear and electronic spin-Zeeman,
as well as HFC and ZFS terms, in the respective or-
der. S is the effective electron spin operator and �B

is the Bohr magneton. hE��;��i0=� in Eq. (7) for the
field-independent shielding tensor ��0� may be identified
with the orbital shielding tensor �orb

�� , in complete analogy
with the Ramsey theory for closed-shell systems. The
temperature-dependent hyperfine shielding part becomes

 �
1

�kT
hE��;0�E�0;��i0 � �

�B

�kT

X
ab

g�aAb�hSaSbi0; (10)

involving, as compared to the doublet case reported in
Refs. [13,15,17], a generalized product of g and A.

In the S � 1
2 case and in the absence of low-lying elec-

tronically excited states, it is trivial to evaluate hSaSbi0 �
1
3S�S� 1��ab, leading to earlier results [13,15]. In the
presence of a nonvanishing ZFS tensor D, the expectation
value of the electron spin components is obtained with n in
Eq. (8) labeling the eigenfunctions and eigenvalues of S 	
D 	 S. jni may be expanded in terms of the 2S� 1 eigen-
states jmSi of Sz as

 hnjSaSbjni �
X
mS;m0S

C?n;m0S
Cn;mS

hm0SjSaSbjmSi: (11)

This is a rigorous theory for the ground-state spin mul-
tiplet of arbitrary S, regardless of the spatial symmetry of
the investigated molecular or solid-state system, such as
axial [17]. In particular, we avoid using the spin suscepti-
bility as an intermediate observable [5,17] and express �
solely in terms of the ESR spin Hamiltonian parameters.
The essential point is that the expression for � is always
evaluated at B0 � 0, i.e., with the ZFS term alone deter-
mining the the Zeeman sublevels n. Erroneous use of finite
B0, e.g., in an attempt to study the field dependence of �
(vide infra), would result in � having an unphysical imagi-
nary part. In that case special assumptions such as the
coincidence of the principal axes of g and D in cylindrical
spatial symmetry will render the error invisible. Our theory
is genuinely free from this artifact. Any significant ther-
mally excited states belonging to other than the ground-
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state Zeeman multiplet must naturally be accommodated in
the summation over n.
�orb, g, and A obtained at any consistent level of theory

may be used in Eq. (7). In particular, Refs. [15,17] expand
g and A as

 g � �ge ��giso�1��~g (12)

 A � �Acon � APC�1�Adip �Adip;2 �Aas: (13)

g consists of the O��0� free-electron ge factor and the
O��2� g shift tensor �g, the isotropic and anisotropic parts
of which are �giso and �~g, respectively. The HFC tensor
contains the O��2�, NR contribution Acon1�Adip as well
as the O��4� relativistic SO term APC1�Adip;2 �Aas

divided into the respective isotropic, symmetric aniso-
tropic, and antisymmetric anisotropic contributions.
Retaining up to O��4� terms, the contributions arising
from

P
abg�aAb�hSaSbi0 [Eq. (7)] are listed in Table I.

The result generalizes the previously [15] presented
doublet-case terms due to the fact that hSaSbi0 contains
also an anisotropic symmetric contribution for higher
multiplicities.

The result for the O�B2
0� field dependence [23] consists

of thermal averages of terms involving the leading-order
field dependence of �orb �E����;���, g �W����;0��, A
�E���;���, and susceptibility W���;0�. As alluded to above,
it does not correspond to averaging the product of field-
independent g and A at finite field, as in Ref. [17].

We interfaced the evaluation of Eq. (7) to the ORCA [24]
molecular electronic structure package. The code uses
Gaussian orbital basis sets and allows spin-unrestricted
DFT calculation of the necessary g [25], A [26], and D
[27] tensors using both generalized gradient approximation

(GGA) and hybrid functionals. �orb [15] was obtained
using similar methods from GAUSSIAN 03 (Ref. [28]).

Calculations were carried out for the metallocenes [29]
NiCp2, CrCp2 (S � 1), VCp2 (S � 3

2 ), and MnCp2 (S � 5
2 )

as well as a hypothetical, nonaxially symmetric chromium
complex �Cr�en�2NH3Br�2� in the spin states S � 1

2 , 3
2 , and

5
2 . The details and results have been deposited in EPAPS
[23]. According to Fig. 1, the NR contact term is respon-
sible for the experimental 13C shift trends in metallocenes.
The results for �orb and the hyperfine terms that contribute
to the isotropic shift in the doublet case (Table I), are in
good qualitative agreement [23] with the approximate
theory and DFT calculations of Ref. [17]. Hence, the
presently generalized, nondiagonal hSSi0 in Eq. (10)
does not dramatically change terms 1, 3, 6, and 9. The
range of DFT data obtained [23] indicates that the accuracy
of the current functionals does not yet allow a one-to-one
comparison with the experiment. More importantly, the
‘‘nondoublet’’ contributions to the isotropic shift (terms
2, 4, 7, and 8) are nonvanishing and amount up to a few
ppm each, equally large as the pseudocontact term 9. In
fact, the generalization of the NR dipolar shift (term 2)
equals �196 ppm for 3NiCp2 as a result of the large
anisotropy of D at the PBE0 level [23]. Corresponding
changes are seen in the shielding anisotropy [23], where
the nondoublet terms (1, 3, and 6) contribute due to the
ZFS interaction.

TABLE I. Order in the fine structure constant � and tensorial
ranks of the hyperfine shielding terms in paramagnetic substan-
ces in both doublet and higher-multiplicity spin states.

Tensorial ranka

Term in ��� Number Order S � 1
2 S > 1

2

geAconhS�S�i0 1 O��2� 0 0, 2

ge
P
bA

dip
b� hS�Sbi0 2 O��2� 2 0, 2, 1

geAPChS�S�i0 3 O��4� 0 0, 2

ge
P
bA

dip;2
b� hS�Sbi0 4 O��4� 2 0, 2, 1

ge
P
bA

as
b�hS�Sbi0 5 O��4� 1 2, 1

�gisoAconhS�S�i0 6 O��4� 0 0, 2

�giso
P
bA

dip
b� hS�Sbi0 7 O��4� 2 0, 2, 1

Acon
P
a�~g�ahSaS�i0 8 O��4� 2, 1 0, 2, 1P

ab�~g�aA
dip
b� hSaSbi0 9 O��4� 0, 2, 1 0, 2, 1

aRank-0, 2, and 1 contributions correspond to the isotropic
shielding constant and anisotropic symmetric as well as anti-
symmetric terms, respectively.

FIG. 1 (color online). Calculated (PBE0 [30]) 13C NMR
chemical shift contributions in the metallocenes 3NiCp2,
3CrCp2, 4VCp2, and 6MnCp2 at 298 K, averaged over the
equivalent nuclei and numbered according to Table I. The NR
contact shift (term 1) as well as the total and experimental shifts
have been divided by three in the figure. Each experimental
datum is an average of the solution [31–33] and solid-state
[34,35] results.
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The effect of spatial symmetry can be assessed by
imposing artificially coaxial g and D for the nonaxial
�Cr�en�2NH3Br�2�. Compared to the full analysis [23],
axial symmetry increases the total 13C11 chemical shift
by 0.5 ppm for the quartet state, due to changes in hyperfine
terms 2, 4, and 7–9. The almost orbitally degenerate S � 5

2
state experiences a larger change of 44 ppm.

In conclusion, we have presented a systematic and rig-
orous first principles theory for the PNMR nuclear shield-
ing � in arbitrary spin state and spatial symmetry in terms
of the ESR spin Hamiltonian parameters and not involving
spin susceptibility. For higher than doublet states, the
resulting expression for the field-independent ��0� contains
the product of the electronic Zeeman and nuclear HFC
interactions in the eigenstates of the ZFS Hamiltonian.
The leading-order, quadratic magnetic-field-dependence
of � involves the field-dependence coefficients of the
underlying g, A, orbital shielding, and susceptibility ten-
sors, and is to be evaluated in the limit of vanishing B0,
similarly to ��0�. DFT calculations of PNMR chemical
shifts in high-spin metallocenes indicate significant con-
tributions to chemical shift and shielding anisotropy not
present in doublet systems. Assumption of axial symmetry
is also shown to potentially lead to errors in the analysis of
nonaxial systems. We believe that the present theory will
be valuable in the prediction and analysis of PNMR data in
various fields both in solid state and molecular science.
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[17] P. Hrobárik, R. Reviakine, A. V. Arbuznikov, O. L.
Malkina, V. G. Malkin, F. H. Köhler, and M. Kaupp,
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