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We present a perturbative method to estimate the spectral gap for adiabatic quantum optimization,
based on the structure of the energy levels in the problem Hamiltonian. We show that, for problems that
have an exponentially large number of local minima close to the global minimum, the gap becomes
exponentially small making the computation time exponentially long. The quantum advantage of
adiabatic quantum computation may then be accessed only via the local adiabatic evolution, which
requires phase coherence throughout the evolution and knowledge of the spectrum. Such problems,
therefore, are not suitable for adiabatic quantum computation.
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It is widely believed that quantum mechanics can pro-
vide speedup for certain computations. Different quantum
algorithms have been proposed that potentially can solve
problems such as factorization [1], unstructured search [2],
or molecular simulations [3] on a quantum computer. One
type of problem for which quantum mechanics may pro-
vide an advantage over classical computation is optimiza-
tion. In optimization problems, one is interested in finding
solutions that optimize some function subject to some
constraints. Usually, not only the best solution, but also
solutions close to it, are of interest.

Physical systems at low temperatures naturally relax to
their lowest energy states, effectively providing optimal
solutions to their energy function. Such a relaxation pro-
cess, however, may take a very long time. The time to reach
the low energy states may be significantly reduced via an
annealing process in which the temperature is reduced
from a large value to a small value so slowly that the
system stays effectively in equilibrium at all times. The
slow evolution from a thermally disordered to ordered state
with decreasing T will settle the system in one of its low
lying energy states depending on the evolution time.
Similar ideas have been employed in simulated annealing
algorithms.

Quantum annealing (QA) [4,5] is the quantum analog of
the above classical annealing. In QA the disorder is intro-
duced quantum mechanically via a Hamiltonian that does
not commute with the optimization Hamiltonian. The
added term generally has a ground state that is a super-
position of all the eigenstates of the optimization
Hamiltonian. Therefore, the disordered state is a superpo-
sition rather than a thermal mixture as it is in classical
annealing. The disorder is removed by slowly removing the
added term to the Hamiltonian. The system will then settle
into one of its low lying energy states if the evolution time
is long enough.

Closely related to QA is adiabatic quantum computation
(AQC) [6]. In AQC an initial Hamiltonian H B is slowly
deformed into a final (problem) Hamiltonian H P:

 H � �1� s�t��H B � s�t�H P; (1)

with s�t� changing from 0 to 1 between the initial (ti � 0)
and final (tf) times. In this case, H B plays the role of the
disordering Hamiltonian. The main difference between QA
and AQC is that in the latter the system is constrained to its
ground state at all times, starting from the ground state of
H B, into which it is designed to be initialized, and ending
in the ground state of H P, which encodes the solution to
the problem of interest. In other words, AQC is an exact
algorithm while QA is heuristic.

Unlike QA, AQC is not restricted to optimization prob-
lems; i.e., the problem Hamiltonian can be nondiagonal.
For example, a universal AQC can run any quantum algo-
rithm, and has been shown to be computationally equiva-
lent to the gate model of quantum computation, as both can
be efficiently mapped into each other [7,8].

The performance of AQC is determined by the minimum
gap gm between the first two energy levels. In the global
adiabatic evolution scheme, s is changed uniformly with
time ( _s � const) and the computation time depends on gm
as �global / g

�2
m . In the local adiabatic scheme [9], on the

other hand, s is a nonlinear function of time designed in
such a way to optimize the computation time by spending
the majority of the evolution time in the vicinity of the
anticrossing. As a result, the computation time of the local
AQC is reduced to �local / g

�1
m , which scales better with

gm.
The global and local schemes of AQC are also different

in terms of their response to decoherence. The global
scheme is robust against environmental noise and decoher-
ence [10–14]. The local adiabatic scheme, on the other
hand, is very sensitive to decoherence. It was shown in
Ref. [14] that in order for the local scheme to change the
scaling of the computation time from / g�2

m to / g�1
m , the

computation time should be smaller than the global de-
phasing time. Moreover, local adiabatic evolution requires
knowledge of the spectrum which is not feasible for gen-
eral Hamiltonians.
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An important question now is what kind of problems can
benefit from the quantum advantage of AQC without re-
quiring local adiabatic evolution and therefore phase co-
herence? It is known that for the unstructured search
problem [9], �global � O�N�, which is the complexity of
classical search, while �local � O�

����
N
p
�, which is the opti-

mal performance of a quantum algorithm. (Here N � 2n,
where n is the number of qubits.) Thus, the advantage over
classical computation is only possible via the local adia-
batic evolution. On the other hand, the universal AQC
[7,8,15] can provide a solution to a problem in polynomial
time if the same problem can be solved in polynomial time
using gate model quantum computation. Evidently, the
polynomial advantage does not depend on local evolution,
which can only provide quadratic enhancement. There
have also been previous works to determine the complexity
of AQC for some other special Hamiltonians [16–18]. In
this Letter, we study this problem for a rather general form
of adiabatic quantum optimization.

We consider physically realizable initial and final
Hamiltonians:

 H B � �
�

2

Xn
i�1

�xi ; (2)

 H P � �
E

2

�Xn
i�1

hi�
z
i �

Xn
i;j�1

Jij�
z
i�

z
j

�
; (3)

where�x;zi are the Pauli matrices for the ith qubit, hi and Jij
are dimensionless local fields and coupling coefficients,
respectively [typically O�1�], and E is some characteristic
energy scale for H P. The initial Hamiltonian H B has a
nondegenerate ground state j G�0�i � j0ni. Here, we have
adopted the notation j �zi � H�njzi, z 2 f0; 1gn, for states
that are diagonal in the Hadamard basis, with H being the
Hadamard transformation.

We denote the ground state of the total Hamiltonian by
j Gi �

P
zazjzi, where az are complex probability ampli-

tudes. At the beginning of the evolution, az � 1=
����
N
p

;
therefore, j Gi is a uniform superposition of all the states
in the computation basis, but at the end of the evolution it is
only a superposition of the final solutions. The transition
from large to small superpositions happens very suddenly
at the minimum gap, which in the limit gm ! 0 represents
a quantum phase transition. Here, we only focus on first-
order phase transition in which the gap is in the form of an
avoided crossing [19]. If gm is much smaller than the
separation of the two crossing levels from other energy
levels, then the slow evolution of the system close to the
anticrossing will be restricted only to those levels. Using a
new coordinate � � 2E�s� s	�, where E is an energy scale
characterizing the anticrossing and s	 is its position, one
can write a two-state Hamiltonian:

 H � ����z � gm�x�=2; (4)

with �x;z being the Pauli matrices in the two-state subspace.

Immediately before and after the anticrossing, we write

 j 
G i � j G�
�0�i �
X

z2f0;1gn
a
z jzi; (5)

with �0 � E12, and E12 being the energy separation be-
tween the first two excited states. Using (4) it is easy to
show that for �0 � gm

 gm  �0jh �G j 
�
G ij; (6)

i.e., gm is proportional to the overlap of the wave functions
before and after the anticrossing.

Let us introduce two sets

 S
 � fz: ja
z j> �g; (7)

where � is a small number. Since all elements in S


contribute to the superposition, the normalization condi-

tion requires ja
z j � O�1=
���������
jS
j

p
�, yielding

 j 
G i �
XN
z2S


1���������
jS
j

p jzi; (8)

where jSj denotes the cardinality of set S. The minimum
gap will therefore be

 gm /
jS� \ S�j������������������
jS�jjS�j

p �

���������
jS�j
jS�j

s
: (9)

The equality happens when all states in S� also belong to
S�. We shall only focus on this case as it provides an upper
limit for gm. In order to understand what can make the gap
small, we need to understand how S
 are constructed. To
this end, we use perturbation expansion.

We introduce the dimensionless parameter

 ��t� �
s�t�E

�1� s�t���
; (10)

which varies from 0 to 1 during the evolution. We shall
drop the time dependence of � for simplicity. We start by
calculating j Gi near the end of the evolution, where � is
large, by considering H 1=� �H P � �1=��H B. Let us
for now assume that the problem has a unique solution;
therefore the ground state of H P is a nondegenerate state
jfi. To the 0th order in 1=� , j �0�G i � jfi. Since H B is a
linear function of�xi , it can only generate single qubit flips.
Thus, to include a state jzi with Hamming distance m �
kz� fk from the solution jfi, in j Gi, we need to apply
H B at least m times. Therefore, a�z is nonzero only after
the mth order perturbation: a�z � O�1=�m�. This restricts
the states in S� to be close to f in Hamming distance.
Requiring 1=�m * �, we find

 S�  fz: kz� fk<mcg; (11)

 mc /
log�1=��

log��
; �
 � ��� � 
�0�: (12)
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The above argument can be easily generalized to multi-
solution problems by writing the unperturbed ground state
near the end of the evolution as j �0�G i � N�1=2

s
PNs
l�1 jfli,

where fl is the lth solution among the total Ns solutions of
the problem. In this case,

 S�  fz: min
l
kz� flk<mcg: (13)

Therefore, the set S� is constructed from states that are
close in Hamming distance to the final solutions.

To find S�, we perform perturbation expansion around
H B, with � as the small parameter, using H � �H B �

�H P. Before performing the perturbation expansion, let
us use our intuition to understand how S� can be formed.
At � � 0, the ground state of the Hamiltonian H B is the
uniform superposition of all the states in the computa-
tion basis. Adding a small perturbation �H P to the
Hamiltonian will introduce a penalty to those eigenstates
of H P that have large eigenvalues. As a result, one expects
that adding �H P will remove those high energy eigen-
states from the superposition. The larger the � , the more
high energy levels will be removed from the superposition
and eventually only low lying states will survive.

Let us make this intuitive argument more quantitative.
Since H B is diagonal in the Hadamard basis, we need to
do the perturbation expansion in that basis. Let us write

 j Gi �
X

z2f0;1gn
b�zj �zi: (14)

To the 0th order, the wave function is j �0�G i � j0
ni. The

Hamiltonian H P is a bilinear function of �zi ; hence, it can
generate single and two qubit flips in the Hadamard basis.
Again, in order to include a state j�zi into the superposition
j Gi, where z has a Hamming weight w, we need to apply
H B at least w=2 times. This requires b�z � O��w=2�
thereby making b �z non-negligible only if

 w<wc /
log�1=��

log�1=���
: (15)

In order to determine S�, we need to know how j �G i is
formed in the computation basis, not in the Hadamard
basis. Since H B does not commute with H P, one can
use the uncertainty principle to find the restriction imposed
by the perturbation in the Hadamard basis, on the wave
function in the computation basis. Let �EP and �EB rep-
resent uncertainties in H P and H B, respectively:

 �EB � �hH
2
Bi � hH Bi

2�1=2;

�EP � �hH
2
Pi � hH Pi

2�1=2;
(16)

where h� � �i represents expectation value. The uncertainty
principle requires �EB�EP �

1
2 hi�H B;H P�i. Every state

j �zi is an eigenstate of H B with eigenvalue w�, where w is
the Hamming weight of z. For the ground state j Gi,
therefore, we have �EB � wc�. The uncertainty principle

requires �EP / 1=wc, leading to

 S�  fz: Ez < Ecg; (17)

 Ec /
log�1=���
log�1=��

: (18)

As expected, the set S� is made of low energy eigenstates
of H P.

Equations (12) and (18) suggest that as �
 ! 1, mc !
1 and Ec ! 0. Since the perturbation expansion breaks
down at � � 1, these equations cannot be extended all the
way to � � 1. In fact, � � 1 is exactly where the quantum
phase transition and therefore the anticrossing occurs.
However, to calculate gm using (6), we need �0 � gm,
which ensures that j 
G i are indeed defined far away
from the phase transition point, where the perturbation
expansion and therefore (13) and (17) still hold. The
important fact to notice is that the sets S
 are formed in
completely different ways: S� is constructed by all the
energy levels below some threshold, while S� is formed by
all the states in Hamming proximity to the answers. The
two sets could be very different leading to a very small
energy gap.

For the upper limit in (9), i.e., gm /
���������������������
jS�j=jS�j

p
, the

computation time will be �local /
�������������global
p

/
���������������������
jS�j=jS�j

p
. If

the problem Hamiltonian happens to have an exponentially
large number of low energy states that have large
Hamming distances to the correct solutions (i.e., low en-
ergy local minima), those states will belong to S� and not
to S�. The resulting gap will therefore be exponentially
small, and the computation time will be extremely large.
Especially, if jS�j becomes a fraction of N, then �global �

O�N�, which is the complexity of the exhaustive search.
The quantum advantage then will only be achievable via
the local adiabatic scheme for which �local � O�

����
N
p
�.

An interesting example of such difficult problems is
random 3-satisfiability problem (3-SAT). These problems
exhibit a phase transition when the ratio of the number of
clauses m to the number of variables n reaches 4:2 [20].
Before the phase transition the number of solutions that
satisfy the 3-SAT formula is extremely large, but suddenly
after the phase transition point the number of satisfying
solutions drops to zero. Therefore, near the phase transition
point, by adding a few clauses to the 3-SAT formula, a
large number of states that did satisfy it before will no
longer do so. Those solutions, however, violate only those
few clauses. In terms of energy, by adding a few terms in
the Hamiltonian that provide penalties for those few
clauses, an exponentially large number of states that used
to be global minima suddenly become local minima but
with energies very close to the ground state energy. This,
therefore, would result in an exponentially small gap, as
confirmed numerically [21] and analytically [22].

Another example is spin glasses [23], in which the local
fields hi are small or zero and coupling coefficients Jij
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randomly couple (only) neighboring qubits. In such prob-
lems, domains can be formed if a large number of physi-
cally close qubits are strongly coupled to each other [24].
The qubits within a domain minimize the coupling terms
Jij in H P. Those terms, however, remain unchanged if all
of the qubits in the domain flip together. If the energy cost
of flipping a domain, imposed by the field terms (hi) and by
the violation of the bounds (Jij) at the domain boundary, is
not so large, then such a domain flipped state will form a
low energy local minimum. If the size of the domain is
large, then the Hamming distance between the local mini-
mum and the global one will also be large. Thus, the local
minimum and all the states close to it do not belong to S�,
while they do belong to S�. A large number of such
domains may make gm exponentially small. It should be
mentioned that if hi � 0, then the final Hamiltonian will be
symmetric under the total spin flip operation and the phase
transition is likely to be second order, invalidating our
assumption.

To conclude, we have used a perturbative approach to
estimate the gap size for adiabatic quantum optimization
problems. The gap is found to be inversely proportional to
the square root of the number of states that have energies
close to the global minimum. Therefore, problems that
have a large number of low energy local minima tend to
have a small gap. In general, problem instances in which
the interaction terms in the Hamiltonian dominate the
energy eigenvalues (i.e., typical values of Jij are much
larger than those for hi) are likely to form low energy local
minima and therefore make the gap small. If the number of
low energy local minima becomes exponentially large,
then the gap will be exponentially small. In such cases,
only a local adiabatic evolution scheme can provide quan-
tum advantage over classical computation. Local AQC,
however, requires phase coherence during the evolution
[14] and knowledge of the energy spectrum which limits its
practicality. These problems, although unsuitable for AQC,
could be suitable for heuristic algorithms (if approximate
solutions are acceptable), because the chance of finding a
solution within the acceptance threshold will be large.
Quantum annealing therefore may provide good enough
solutions in a short time, although finding the global mini-
mum via AQC can take an extremely long time.

Finally, it should be mentioned that the energy gaps
considered here are only the avoided crossing type, which
correspond to first-order quantum phase transitions. If the
final Hamiltonian possesses a symmetry that imposes a
spontaneous symmetry breaking at the anticrossing, the
resulting phase transition may become second order or

higher orders. It has been stated that Hamiltonians with
higher order phase transitions can provide better (possibly
polynomial) scaling with the number of qubits [19,25].
Study of those is beyond the scope of this Letter.
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