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We introduce a unified formulation of variational methods for simulating ground state properties of
quantum many-body systems. The key feature is a novel variational method over quantum circuits via
infinitesimal unitary transformations, inspired by flow equation methods. Variational classes are repre-
sented as efficiently contractible unitary networks, including the matrix-product states of density matrix
renormalization, multiscale entanglement renormalization (MERA) states, weighted graph states, and
quantum cellular automata. In particular, this provides a tool for varying over classes of states, such as
MERA, for which so far no efficient way of variation has been known. The scheme is flexible when it
comes to hybridizing methods or formulating new ones. We demonstrate the functioning by numerical
implementations of MERA, matrix-product states, and a new variational set on benchmarks.
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Quantum many-body systems pose some of the most
difficult challenges in modern physics, and many examples
remain inaccessible to analysis. Of the many methods that
have been devised as attempts to meet these challenges,
one of the most successful has been the density matrix
renormalization group (DMRG) [1]. The DMRG was
originally conceived of as a numerical technique for iter-
atively constructing the ground or low-energy states of a
Hamiltonian, so that the system’s Hilbert space is truncated
and the difficulties associated with exponentially increas-
ing dimension are avoided. A more recent interpretation of
the DMRG has cast it as a variational method over matrix-
product states (MPS) [2–6], and this shift in emphasis has
stimulated much work on extending its applicability.

Matrix-product states are expected to provide good ap-
proximations to the ground states of one-dimensional non-
critical systems [7]; however, in other cases it is expected
that alternative variational sets will be required. Motivated
by this, new classes have been introduced, such as pro-
jected entangled pair states [4] and weighted graph states
[9] for higher-dimensional lattices, while multiscale entan-
glement renormalization (MERA) [10] and contractor re-
normalization [11] may be more appropriate for critical
systems. At first sight it may appear that these numerical
approaches to quantum many-body systems have little in
common with each other. Moreover, the specification of a
variational class is only a first step—we also require an
effective method of finding the best description of the
system’s ground or low-energy states within that class.

In this Letter, we provide a unifying picture for several
of these variational methods: we show that by recasting
state classes as quantum circuit classes (unitary networks)
one can formulate a general purpose variational method,
related to the framework of flow equations [12]. We shall
see that to provide a working numerical method, it is
sufficient that the propagation of each Hamiltonian term
can be efficiently tracked on a classical computer. The

contractibility properties of the state classes mentioned
above translate immediately into an analogous property
on their corresponding circuits. Our approach—a flow
equation approach to variational simulations—may be
regarded as an optimal control approach [12,13] to varying
efficiently contractible networks describing variational
states of quantum many-body systems. It is flexible enough
to hybridize known methods or to construct new ones and
provides a first efficient way of variation over MERA.

Variational sets.—We begin with the casting of varia-
tional sets as unitary networks, which provides the basis for
the flow equations approach. Given N spins (and possibly
ancillary systems) consider a family of states Sd �
fUj0i:U 2Udg, where U 2Ud is a set of unitary net-
works characterized by some refinement parameter d, and
j0i denotes the state vector with all spins down. The refine-
ment parameter plays the role, e.g., of the auxiliary dimen-
sion in matrix-product states. These networks consisting of
gates U �

QM
j�1 Uj have to satisfy the condition that cor-

relators of the form h0jUyO1 . . .OkUj0i can be efficiently
computed for any k, that is with effort polynomial in N and
d. Before turning to the variational method we will discuss
a number of important examples of states that can be
discussed in this framework. We begin by considering
the matrix-product states of DMRG. For a system consist-
ing of N spins, we introduce a d-dimensional ancilla
system and consider a circuit consisting of N gates Uj

which act on both the ancilla system and qubit j, giving
a ‘‘staircase’’ form; see Fig. 1(a). By projecting the output
of such circuits onto some basis state of the ancillary
system or by disentangling it, we obtain any matrix-
product state on the spins. A second important example
is the MERA class; see Fig. 1(d). This circuit is arranged in
a tree structure with logN distinct layers, each of which
introduces new spins into the circuit via two sets of gates
known as isometries and disentanglers [10]. An analogous
circuit is also possible using 2D binary trees. Further
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examples of quantum circuit classes are weighted graph
states, where the refinement parameter d is defined by the
nonzero entries of the adjacency matrix of the weighted
graph, and quantum cellular automata [14], the finite depth
d being the refinement parameter, and new variants as
depicted in Fig. 1.

Flow equations as a unifying method of variation.—
Before we introduce the method of variation, let us first
remind ourselves of flow equation ideas. Consider a
continuous transformation of an initial Hamiltonian H
H�t� � U�t�yHU�t�, where U�t� is defined via a
Hermitian generator as the time-ordered integral U�t� �
T exp��i

R
t
0 G�s�ds�. The derivative of H�t� is given by

@tH � �i�G�t�; H�t��. A familiar example from optimal
control theory choosesG�t� � i�K;H�t��, where K is a real
diagonal matrix with unique entries. In this case H�t� will
converge to a diagonal matrix of eigenvalues as t! 1,
with the columns U�t� the corresponding eigenvectors.
This is often referred to as double-bracket flow [12]. A
straightforward application to quantum many-body sys-
tems is impractical, as the flow will in general transform
the Hamiltonian into one having exponentially many
terms. The key to these methods is to truncate the resulting
systems of differential equations in a perturbative fashion
that is a good approximation for small perturbations.

However, we are not aiming for approximate analytical
expressions here. Consider a quantum circuit as a sequence
of M gates Uj�t�, each of which is continuously parame-
terized with infinitesimal generator Gj�t� beginning with
some arbitrary Uj�0�. Write the overall unitary im-
plemented by the circuit as U�t� �

QM
j�1 Uj�t�, and con-

sider the expectation of some many-body Hamiltonian
E�t� � h0jU�t�yHU�t�j0i. A circuit class is defined here

by a specification of the locations of each gate Uj�t�, and
the best approximation to a ground state within a given
class is the circuit that minimizes the expectation E�t�.
Within the framework of flow equations, we will show
how one can choose optimal generators Gj�t� for each
gate. Differentiating the expectation we get @tE �
2Reh0jUyH@tUj0i, and our first goal is to minimize this
derivative subject to the Hilbert-Schmidt constraints
tr�Gj�t�yGj�t�� � "; i.e., the generators remain ‘‘infinitesi-
mal.’’ For U�t� �

QM
j�1 Uj�t�, we find

 @tU � �i
XM
j�1

� YM
k�j�1

Uk

�
Gj

�Yj
k�1

Uk

�
: (1)

Note the convention whereby
QM
j�1 Uj is ordered as

UM � � �U2U1, and the other way around for
Q1
j�M Uj.

We can substitute this back and minimize on a term-by-
term basis at each point t of the flow. Let fBbg be an
appropriate orthonormal Hermitian operator basis, and
expand the jth generator as Gj�t� �

P
bgj;bB

b, with gj;b
real. Now define, for the given Hamiltonian H,

 �j;b�t� � h0jUyH
� YM
k�j�1

Uk

�
Bb
�Yj
k�1

Uk

�
j0i: (2)

Each term of the derivative with this parametrization is
�@tE�j � 2

P
bgj;bRe��j;b�t��, and the constraints of the

minimization problem are
P
bg

2
j;b � ". The Lagrange mul-

tiplier condition for a minimum is then simply gj;b �
�2Re��j;b�t��=�. The following method of evaluating
the optimal generator avoids calculating the quantities
�j;b�t� for each basis element Bb: Writing Gj out in its
operator basis we have Gj�t� � ��2=��

P
bRe��j;b�t��Bb.

Recall that the real part appears because we are taking an
expectation of an operator and its Hermitian conjugate. It
will be convenient to set Gj � ��2=���Fj � F

y
j �, with

 Fj � tr
��Yj

k�1

Uk

�
j0ih0jUyH

� YM
k�j�1

Uk

�
Bbj

�
Bbj ;

which can after some steps be written in terms of a partial
trace over the subsystems Rj not acted on by the gate Uj

 Fj � trRj

��Yj
k�1

Uk

�
j0ih0jUyH

� YM
k�j�1

Uk

��
: (3)

The utility of this expression depends on whether or not we
are able to efficiently calculate the partial trace, which de-
pends on the structure of the circuit class

QM
j�1 Uj and on

the Hamiltonian H. Accordingly, we now introduce con-
traction techniques able to cope with such expressions [15].

Contraction.—We begin by reviewing some of the basic
ideas of contraction and introduce a language for describ-
ing them. What we here call a standard contraction prob-
lem calls for the evaluation of an expectation of the form
h0jUyAUj0i, U being a quantum circuit

QM
j�1 Uj acting on

FIG. 1 (color online). (a) An example of what is here called a
staircase circuit. The upper system here is d-dimensional.
Further examples of unitary networks considered here include:
(b) unitary network of a weighted graph state up to local
deformations, (c) quantum cellular automata with Margolus
partitioning, (d) quantum circuit of MERA including disentan-
gling operations, and (e) a new variant combining (c) and (d)
(‘‘extended MERA’’).
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N spins (and any ancillae) and A some observable. A
contraction procedure is a sequence of maps that construct
operators A0; A1; . . . ; AL, with A0 � A and

 Al � �h0jQl
� 	 1�

�Y
j2Sl

Uj

�
y
Al�1

�Y
j2Sl

Uj

�
�j0iQl

	 1�:

Here Ql and Sl denote subsystems and subcircuits, respec-
tively, and are chosen so that at the final step we obtain
h0jALj0i � h0jUyAUj0i. The contraction is said to be effi-
cient if the dimensions of the operators

Q
k2SjUk scale at

most polynomially in the number of spins N.
The key point here is that we may evaluate such an

expectation (or similarly a trace or partial trace) without
ever having to deal with the overall unitary U, whose
dimension is in general exponential in N. As an example,
suppose we have a two-body Hamiltonian term Hj;j�1

and wish to evaluate h0jUyHk;k�1Uj0i for U, a staircase
circuit. Then we set A0 � Hk;k�1 and iterate Al �
�1 	 h0jk�l�U

y
k�lAl�1Uk�l�1 	 j0ik�l�, so Ql here is sim-

ply the lth spin, and Sl contains only the gate Ul. The final
operator AL so obtained acts only on the ancilla system,
and the desired expectation is thus h0jALj0i. At no stage in
the procedure are we required to manipulate operators of
dimension greater than 2d
 2d. To be entirely clear, a
representative of each of these steps is depicted in Fig. 2(a).
A second example is provided by MERA circuits [10],
which require that we manipulate operators of dimension
at most 64
 64. Here the sets Ql, Sl are defined with
respect to levels of the MERA circuit and the causal cone
of the given Hamiltonian term. A first such step is repre-
sented in Fig. 2(b). After constructing Al, we can move on
to the next MERA layer [Fig. 2(c)].

We now describe the new contraction procedure used to
evaluate the more general expressions of Eq. (3); see Fig. 2.
There are two sets of gates highlighted in these circuits,
which will be dealt with in two separate contraction se-

quences, and we shall refer to these sets as the red cone
(originating from the Hamiltonian as explained above) and
blue cone (originating from the generator), respectively.
The unhighlighted gates are simply canceled as UykUk �
1. We can hence restrict ourselves to the causal cones. We
shall also refer to the gate Uj whose generator we are
calculating as the generatee.

The first contraction sequence involves the gates in the
red cone. Here we set A0 � Hj;j�1 and proceed via a
sequence of partial expectations, with the same sets Ql,
Sl used in a standard contraction [see again Figs. 2(b) and
2(c)]. This continues until we reach the set SG containing
the generatee Uj. At this point we are unable to continue as
some or all of the gates in SG will have been cycled to the
right-hand side (as we are calculating a partial trace). The
final operator of this contraction AG is then constructed by
conjugating the previous AG�1 by those gates that have not
been cycled. The second contraction focuses on the blue
cone and begins by initializing B0 � j0ih0j, acting on the
subsystem as the generatee. The contraction then iterates in
the reverse order to the standard contraction,

 Bj � tr
�
Q0j

�Y
k2S0j

Uk

�
�Bj�1 	 j0ih0j�

�Y
k2S0j

Uk

�
y
�
;

the primed Q0j, S
0
j indicating the reversed order. This con-

traction also continues until it reaches the set SG, at which
point BG is constructed by (anti) conjugating BG�1 with the
gates from SG that have been cycled. The operator Fj is
then given by Fj � trRj�BLAL�, with Rj as for Eq. (3). For
clarity, a MERA procedure is shown in Fig. 2(d).

If the standard contraction procedure is efficient, then
this modified procedure will also be efficient, as the largest
operators we must manipulate are defined by the same sets
Sl. For example, determining the optimal generator for a
gate in a staircase circuit acting on N spins with ancilla
dimension d requires a time O�Nd3�, while for MERA the
time required is O�N logN�. The above methods can be
readily applied to 2D settings of MERA [10], where one
has, e.g., layers of Margolus partitionings as in a quantum
cellular automaton [14], with a treelike reduction of the

FIG. 2 (color online). Contraction rules that are used in the
procedure of finding the optimal generators (a–c), and a circuit
corresponding to Eq. (3) for MERA (d). The red and blue
shading indicate the two causal cones that are encountered
when evaluating the partial trace.

FIG. 3 (color online). (a) Staircase flow for the 30-qubit
Heisenberg chain and (b) 28-qubit ring, in the number of flow
steps. Plot (a) shows the decrease of expectation with the flow for
d � 10 (dashed), 20 (solid), 40 (dotted). Exact values for the two
lowest eigenvalues (for N � 30) are also shown. (c) MERA flow
for the 32-qubit Ising chain. (d) MERA flow for the 32-qubit
Ising ring and extended MERA.
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number of sites in every second step; then again, the
contraction of the two cones can be done efficiently.

Implementation.—We now have the main ingredients
for an actual algorithm. Figure 3 illustrates example im-
plementations for the Heisenberg and critical Ising
Hamiltonians

 HH ��
J
2

XN
j�1

X3

k�1

�kj�
k
j�1; HI ��

1

2

XN
j�1

��1
j�

1
j�1��

3
j �

as benchmarks. (a) and (b) illustrate an implementation for
staircase circuits for the Heisenberg chain (with both open
and closed boundary conditions) chosen for a first imple-
mentation as the corresponding ALPS-DMRG provides
good benchmark. Each step of the flow requires the calcu-
lation and application of the optimal generator for each
gate. We see that for open boundary conditions the stair-
case achieves, for the energy E, the same accuracy of � �
�E� E0�=E0 as the benchmark ALPS-DMRG to six sig-
nificant digits, and no problems with local optima have
been observed [16]. (c) presents a MERA implementation
(representative when random initial conditions are drawn)
for the 32-qubit critical Ising model for bond dimension 2.
Even for this small bond dimension, the relative error of
� � 4:4696
 10�4 is achieved (note that this involves
merely 61 unitaries acting on two spins, which is compa-
rable in accuracy to DMRG for a dimension d defining
MPS being described by an order of magnitude of more
real parameters), for the ring � � 1:2901
 10�4. Similar
performance is found for a 64 spin model. (d) For the
extended MERA we find comparable performance but
quicker convergence. We have also systematically com-
pared the achievable accuracy for the Heisenberg model
with MERA with bond dimension 2 (for which MERA
performs slightly worse) with the one extended MERA
where one appends an additional single layer of a quantum
cellular automaton: this leads in instances to a significant
improvement [of the order of �E1 � E0�=E0 in this model,
critical in the thermodynamical limit], but, first and fore-
most, shows the flexibility of the approach [18].

Conclusions and further work.—We have shown how
ideas from flow equations may be adapted to provide
variational methods for approximating ground states of
quantum many-body systems. The appeal of this approach
is its flexibility, as it is able to unify several existing ansatz
classes within a single framework with a universal varia-
tional technique. Recent work into the dissemination of
correlations in quantum many-body systems has stimulated
much work on the construction of suitable variational
classes. It is hoped that the methods presented here will
facilitate the systematic exploration of the potential of
these approaches.
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