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We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced
by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective
staggered magnetic field. In addition to the known uniform superfluid and Mott insulating phases, the
zero-temperature phase diagram exhibits a novel kind of finite-momentum superfluid phase, characterized
by a quantized staggered rotational flux. An extension for fermionic atoms leads to an anisotropic Dirac
spectrum, which is relevant to graphene and high-Tc superconductors.
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The experimental realization of ultracold atomic gases
loaded into optical lattices has opened up a unique pathway
to study quantum phase transitions of many-body systems
[1]. Exploiting the rich internal atomic structure and the
great versatility in the engineering of optical potentials,
increasingly complex optical lattice models have been
proposed [2,3], for which unconventional quantum phases
are predicted. Recently, it has been suggested that optical
lattices can be used to simulate the quantum behavior of
charged particles in a two-dimensional (2D) lattice sub-
jected to a homogeneous magnetic field [4]. This system is
known to exhibit a wealth of interesting physics, such as
the famous Hofstadter butterfly single-particle spectrum
[5] or the integer and fractional quantum Hall effects [6].
Much less is known, however, about charged particles
moving in a 2D lattice subjected to a staggered magnetic
field. In a pioneering work, Haldane has shown that the
integer quantum Hall effect may occur in this system as a
result of broken time-reversal symmetry [7]. Concerning
the single-particle spectrum, only recently numerical stud-
ies have revealed the connection to the Hofstadter butterfly
[8]. The technical difficulty to engineer magnetic fields
alternating on the spatial scale of condensed matter lattices
has constrained experimental studies to magnetic fields
modulated on a mesoscopic scale [9].

In this Letter we show that a staggered magnetic field in
a lattice can be realized for ultracold bosonic and fermionic
atoms in a 2D optical lattice. We then present a mean-field
theory for the bosonic system and construct the zero-
temperature phase diagram shown in Fig. 1. For small
magnetic fields, the spatially uniform �k � 0� superfluid
phase and the Mott insulating state, known from the con-
ventional Bose-Hubbard model, are reproduced. When the
magnetic flux per plaquette � exceeds �0=2 [see Fig. 2(a)
for the definition of plaquette], where �0 � hc=e is the
fundamental flux quantum, we find that a novel finite-
momentum �k � �� superfluid phase is realized. This su-
perfluid phase is spatially modulated and is characterized

by quantized fluxes of alternating sign for adjacent pla-
quettes. Our work thus points out the possibility of realiz-
ing a novel spatially modulated superfluid with ultracold
bosons, which exhibits a characteristic momentum spec-
trum. An extension of our work for fermions offers the
possibility of simulating various strongly correlated sys-
tems, such as the mean-field Hamiltonian of Affleck and
Marston [10], proposed in the context of high-Tc super-
conductors [11], and the case of massless Dirac spectra, as
realized in graphene [12].

Effective Hamiltonian.—We first consider bosonic
atoms trapped in a 2D square optical lattice potential
VL�r� � �V0�sin2�kx� � sin2�ky�� with an additional
time-dependent potential VR�r; t� � �VL�r�	
cos�2S�r� ��t�, S�r� � tan�1f�sin�kx� � sin�ky��=
�sin�kx� � sin�ky��g, which acts as a collection of micro-

FIG. 1 (color online). Phase diagram with respect to the
chemical potential �, the interaction parameter U, the hopping
amplitude J, and the scaled magnetic flux W. Within the three-
dimensional lobes a gapped Mott-insulator phase prevails.
Outside these lobes the system is superfluid. For small magnetic
fields (W=J < 1) the superfluid is spatially uniform, while for
large magnetic fields (W=J > 1), a quantized staggered rota-
tional flux arises. The white dashed line indicates the (�=U �
2�

���
2
p

) plane analyzed in detail in Fig. 2.
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rotors, each applying angular momentum to a single pla-
quette, with alternating signs for adjacent plaquettes. Here,
k � 2�=� and � is the wavelength of the optical potential.
The term VR�r; t� can be implemented experimentally by
means of a bichromatic light-shift potential [13]. The well
depth V0 > 0, the oscillation frequency � and the coupling
strength � 2 �0; 1� are adjustable parameters in experi-
ments. We denote the sublattices of the bipartite square
lattice by A and B [cf. Fig. 2(a)] and define four vectors
e1 � �e3 � ��=2�x̂, e2 � �e4 � ��=2�ŷ connecting
each A site to its four B neighbors. Upon the assumption
that the atoms in the optical lattice are restricted to the
lowest Bloch band and that VR�r; t� does not induce inter-
band transitions, the system can be described by a Bose-
Hubbard model with time-varying hopping and energy
offset [1,13]

 

Ĥ�t� � �
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Jl�t�fâ
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r âr�el � H:c:g
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�r�t�n̂r �
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n̂r�n̂r � 1�; (1)

where âr and âyr are the boson annihilation and creation
operators on site r obeying the canonical commutation
relation �ar; a

y
r0 � � �r;r0 , n̂r � âyr âr is the number operator,

Jl�t� � J� ��1�l�V0�1 sin��t� denotes the anisotropic
time-varying hopping, �r2A;B�t� � �2�V0�2 cos��t� is a
time-varying energy offset, and U is the onsite inter-
action energy. In terms of the Wannier function of the
lowest band w�r�, we have J �

R
dxdyw��x� �=4; y�	

�� @
2

2mr
2 � VL�r��w�x� �=4; y�, �1 �

R
dxdyw��x�

�=4; y��sin2�kx� � cos2�ky��w�x� �=4; y�, �2 �R
dxdyjw�x; y�j2�cos�kx� cos�ky��, and U / �as=m�	R
dxdyjw�x; y�j4, with the atomic mass m and the

s-wave scattering length as. We note that by using
Feshbach resonances, the s-wave interaction can be con-
sidered as another experimentally tunable parameter. Upon
expressing all terms with harmonic time dependence in

terms of a quantized auxiliary bosonic field and integrating
out this field, similarly as in Ref. [2], we find the effective
Hamiltonian

 Ĥ eff 
 �
X

r2A;l�1�4

fjcjei���1�l âyr âr�el � H:c:g

�
1

2
U

X
r2A
B

n̂r�n̂r � 1�; (2)

where the anisotropic complex hopping amplitude is
given by jcj �

������������������
J2 �W2
p

, � � tan�1�W=J� with W �
2�2V2

0�1�2=@�. The Aharonov-Bohm phase �, picked
up by the bosons when tunneling along the edge of a
plaquette, may be interpreted as resulting from an effective
staggered magnetic field with a magnetic flux per plaquette
� � �2�=���0. This artificial gauge field arises due to the
�=2 phase lag between the time-varying hopping terms
Jl�t� and the energy offset terms �r2A;B�t�, which assigns a
sense of rotation to each plaquette. In Eq. (2) we have
neglected nonlocal negative ring exchange terms with
energy ��V0�1�

2=2@� which may be tuned to be 2 orders
of magnitude smaller than all other terms. We also omitted
a nonlocal term composed of summands n̂rn̂r0 , describing
interaction between distant lattice sites mediated by the
retroaction of the atoms upon the light-shift potential. This
term is expected to be significant, if the light-shift potential
is produced inside a high-finesse optical cavity [14]. For
conventional light-shift potentials produced by superposi-
tion of laser beams, which we consider here, it is irrelevant.
Nonetheless, this term does not alter the mean-field results
presented below.

For an optical lattice loaded with fermionic atoms, a simi-
lar derivation leads to an effective staggered magnetic field
as well. The single-particle spectrum can be obtained for
both, fermions and bosons, by expressing the kinetic terms
in Hamiltonian (2) in momentum space with two inde-
pendent amplitudes âk��r2Aâreik�r, b̂k��r2Bâreik�r,
and applying the canonical transformations 	̂k �

����k=j�kj�âk � b̂k�=
���
2
p
; 
̂k � �����k=j�kj�âk � b̂k�=

���
2
p

.
Here, �k � 2jcjei� cos�k�a� � 2jcje�i� cos�k�a� is the
generalized lattice dispersion, with k� � �kx � ky�=2 and
a � �=

���
2
p

. We then find

FIG. 3 (color online). Single-particle spectrum for (a) �<
�=4, with the minimum at the origin, and (b) � > �=4, with
minima at the Brillouin zone edges (� �=a, ��=a).
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FIG. 2 (color online). (a) The bipartite lattice comprises sites
labeled by ‘‘A’’ and ‘‘B.’’ The gray rectangle identifies a single
plaquette. The solid arrows indicate the tunnelling currents
driven by VR�r; t�. (b) Phase diagram within the (�=U � 2����

2
p

) plane spanned by the dashed white line and the W axis in
Fig. 1.
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E�k � �2jcj�cos2�k�a� � cos2�k�a�

� 2 cos�k�a� cos�k�a� cos�2���1=2; (3)

where the lower (upper) branch corresponds to the in-(out-
of-)phase mode 
̂k (	̂k) between the sublattices. For the
fermionic system at half-filling, the single-particle spec-
trum exhibits two inequivalent anisotropic Dirac cones; see
Fig. 3. Their slope can be tuned via the staggered magnetic
field, thus resembling the physics of graphene with aniso-
tropic hopping arising under uniaxial pressure [15].
Furthermore, at � � �=4 and negligible interactions, the
system simulates the Affleck-Marston Hamiltonian [10],
wherein a staggered �-flux phase is proposed to describe
the pseudogap regime of high-Tc superconductors.
Although several experiments were suggested to probe
the relevance of this phase, the problem remained open
due to unavoidable effects of disorder [16]. The system we
consider thus offers an opportunity to study such phases in
a highly controllable environment.

Mean-field theory for the bosonic system.—We antici-
pate the bosonic system to exhibit the well-known quantum
phase transition from a superfluid to a Mott insulating
phase as the parameter U=4jcj is increased [1]. The phase
boundary between the two phases is determined by a
straightforward generalization of the functional integration
method presented in Ref. [17]. The partition function is
written in terms of an imaginary-time functional integral
Z�

R
Da�Daexpf�S�a�;a�=@g with the action S�a�;a��R

@=kBT
0 d��

P
ra
�
r����@@����ar����Heff�, where T is the

temperature and � the chemical potential. In the Mott
regime, we introduce the order parameter  r��� (a
Hubbard-Stratonovich field) to decouple the hopping
term and upon integrating out the boson fields (a�, a),
the effective action (up to quadratic order) gives the zero-
temperature quasiparticle(hole) energy dispersion,

 �qp;qhk � ���
U
2
�2n� 1� �

j�kj

2
�

1

2
@!k; (4)

where @!k �
�����������������������������������������������������������
j�kj

2 � �4n� 2�j�kjU�U2
p

is the energy
required for creating a quasiparticle-quasihole pair and n is
the lattice filling factor, given by the ratio between the
number of bosons N and the number of sites Ns. The phase
boundary between the Mott and the superfluid states can
then be determined by the condition that the excitation
becomes gapless @!k � 0, which is shown in Fig. 1 as the
generalized Mott lobes. For brevity we henceforth concen-
trate on the (�=U � 2�

���
2
p

) plane spanned by the dashed
white line and the W axis in Fig. 1 [cf. Fig. 2(b)]. We note
that for � > �=4 the low energy excitations in the gapped
Mott phase carry a finite, rather than zero, lattice momen-
tum. This implies that the associated critical phenomena at
the phase boundary between the Mott-insulator and the
staggered-vortex phase could be different from the usual
universality class of the O�2� quantum rotor model for the

superfluid-Mott transition in the Bose-Hubbard model
[18].

In the superfluid regime, however, the staggered mag-
netic field drives the system into distinct superfluid
phases. Even though interactions induce a finite quantum
depletion, for a system of N weakly interacting bosons,
Bose-Einstein condensation (BEC) takes place at the low-
est single-particle state. For � < �=4, BEC occurs at the
k � �0; 0� � 0 state, giving rise to a uniform superfluid
with the many-body ground state j�0i / �
̂

y
0 �
Nj0i �

�
P

r2A
Bâ
y
r �
Nj0i. For � > �=4, new absolute minima de-

velop at the Brillouin zone edges k � ���=a;��=a� �
� for which condensation takes place; see Fig. 3. Be-
cause of the equivalence of the four minima in the recipro-
cal space, the new many-body ground state can be written
as j��i / �
̂

y
��
Nj0i � �

P
r�â
y
r � iâ

y
r�e2
� âyr�e1�e2

�

iâyr�e1
��Nj0i with r � 2r0 and r0 2 A 
 B. The angular

phases of the order parameter differ by �=2 between
neighboring lattice points, and there is a quantized flux
on each plaquette, with alternating sign for adjacent pla-
quettes. Thus, for the BEC at k � �, the system is char-
acterized by a vortex-antivortex lattice with a periodicity
�=

���
2
p

, namely, a staggered-vortex superfluid phase. This
phase possesses a definite chirality that is commensurate
with the staggered magnetic field, a feature which is not
present in the uniform superfluid phase. To confirm that
distinct superfluids are stabilized, we employ a varia-
tional mean-field ansatz for the ground state j�;
i �
�e�i�=2 cos�
�
̂y0 � e

i�=2 sin�
�
̂y��
Nj0i and minimize the

expectation value with respect to the Hamiltonian (2). The
uniform superfluid (
 � 
0 � 0) and the staggered-
vortex phase (
 � 
0 � �=2) are indeed the absolute
minima of the mean-field energy for � < �=4 and � >
�=4, respectively. Furthermore, the stability of both
phases can be verified by examining the energy cost for
deviating from the condensate hĤij
0�"i � EMF �

"24Njcj�
���
2
p
j sin��=4� ��j � �UN�=�8jcj�� �O�"4� with


0 2 f0; �=2g and EMF � �4Njcj cos���. Finally, we
note that as the system is tuned across the � � �=4 line,

0 changes discontinuously by a value of �=2, suggesting
that the two superfluid phases are separated by a quantum
first-order phase transition line within this variational
mean-field analysis. At this line, both phases are degener-
ate in their mean-field energies, with a finite energy barrier
��UN2=8Ns between the two minima.

Fluctuations.—Following the Bogoliubov theory for a
weakly interacting Bose gas, we derive the energy spectra
of the superfluid phases. We consider the Hamiltonian (2)
in the grand-canonical ensemble and make the substitution
for the condensation mode 
̂k0

!
������
N0

p
� 
̂k0

, whereN0 is
the condensate number and k0 � 0 (k0 � �) for the uni-
form superfluid (staggered-vortex) phase. Choosing the
chemical potential at its mean-field value, � � �j�k0

j �

n0U=2 and keeping terms up to quadratic order in the
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fluctuations, the Hamiltonian becomes,

 Ĥ k0

 �

1

4
n0UN0 �

X
k

��
j�kj � j�k0

j �
1

2
n0U

�
	̂yk	̂k

�

�
�j�kj � j�k0

j �
1

2
n0U

�

̂yk
̂k

�

�
1

8
n0UAk;k0

�	̂yk	̂
y
�k � 
̂

y
k
̂
y
�k�

�
1

4
n0UBk;k0

	̂yk
̂
y
�k � H:c:

��
;

where n0�N0=Ns is the condensate density, Ak;0�Bk;��
1�exp��2i’k�, Bk;0�Ak;��1�exp��2i’k�, and
’k � arg��k�. The Hamiltonian can be readily diagonal-
ized by a Bogoliubov transformation to yield the spectrum

@!k;k0
�

�������������������������������������������������������������������������������������������
j�kj

2 � j�k0
j2 � n0Uj�k0

j � n0Uj�kj
������������
Gk;k0

pq
,

where Gk;0 � cos2�’k� � 4j�0j�j�0j=n0U� 1�=n0U,
and Gk;� � sin2�’k� � 4j��j�j��j=n0U� 1�=n0U.
The lower branch of the spectrum is linear and
gapless at long wavelength @!k;k0


������������������������������������������������������������������������������������������������
jcj cos��� k0a=2��4jcj cos��� k0a=2� � n0U�

p
�k�k0�,

corresponding to the Goldstone mode of the broken gauge
symmetry.

Experimental signatures.—The characteristic momen-
tum spectrum of the staggered-vortex phase provides a
clear signature to identify this state experimentally by
imaging momentum space using standard ballistic ex-
pansion techniques. The momentum distribution can be
expressed as h�y�k���k�i � jW�k�j2SB�k�SP�k�, where
W�k� is the Fourier transform of the Wannier func-
tion, SB�k� � j

P
R2A
Be

i2k�Rj2 is the structure factor
of the Bravais lattice, and SP�k��

P
�;�2f1;2;3;4g 	

eik��r��r��hâyr� âr�i is the structure factor of a plaquette.
Here, r� denote the four corners of a plaquette and âr�
are the corresponding boson operators. We may write
SP�k� � nj

P
�2f1;2;3;4ge

ik�r�ei � j2 with  � � 0 for the uni-
form superfluid j�0i and  � � ��=2 for the staggered-
vortex superfluid j��i. As illustrated in Fig. 4, the two
cases display distinct structures of Bragg maxima, directly
observable in experiments.

In conclusion, we have shown that anisotropic and time-
varying hopping terms in a 2D optical lattice give rise to an
effective staggered magnetic field. For the bosonic system,
it leads to a novel kind of superfluid phase characterized by
a quantized staggered rotational flux. For the system real-
ized with fermionic atoms, it gives rise to anisotropic Dirac
spectra at half-filling. The tunability of the interaction
terms and the addition of optical disorder potentials allow
for systematic simulations of various strongly correlated
systems, such as graphene and high-Tc superconductors.
Another exciting direction for future work could be the
search for quantum Hall physics in the system. Finally, we
remark that the experimentally accessible Hamiltonian (1)
offers a wider parameter space than presently considered in
this work. The inclusion of non-negligible ring exchange
interactions, for example, may offer the opportunity to
realize exotic quantum insulators [2].
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