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We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced
by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective
staggered magnetic field. In addition to the known uniform superfluid and Mott insulating phases, the
zero-temperature phase diagram exhibits a novel kind of finite-momentum superfluid phase, characterized
by a quantized staggered rotational flux. An extension for fermionic atoms leads to an anisotropic Dirac
spectrum, which is relevant to graphene and high-7, superconductors.
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The experimental realization of ultracold atomic gases
loaded into optical lattices has opened up a unique pathway
to study quantum phase transitions of many-body systems
[1]. Exploiting the rich internal atomic structure and the
great versatility in the engineering of optical potentials,
increasingly complex optical lattice models have been
proposed [2,3], for which unconventional quantum phases
are predicted. Recently, it has been suggested that optical
lattices can be used to simulate the quantum behavior of
charged particles in a two-dimensional (2D) lattice sub-
jected to a homogeneous magnetic field [4]. This system is
known to exhibit a wealth of interesting physics, such as
the famous Hofstadter butterfly single-particle spectrum
[5] or the integer and fractional quantum Hall effects [6].
Much less is known, however, about charged particles
moving in a 2D lattice subjected to a staggered magnetic
field. In a pioneering work, Haldane has shown that the
integer quantum Hall effect may occur in this system as a
result of broken time-reversal symmetry [7]. Concerning
the single-particle spectrum, only recently numerical stud-
ies have revealed the connection to the Hofstadter butterfly
[8]. The technical difficulty to engineer magnetic fields
alternating on the spatial scale of condensed matter lattices
has constrained experimental studies to magnetic fields
modulated on a mesoscopic scale [9].

In this Letter we show that a staggered magnetic field in
a lattice can be realized for ultracold bosonic and fermionic
atoms in a 2D optical lattice. We then present a mean-field
theory for the bosonic system and construct the zero-
temperature phase diagram shown in Fig. 1. For small
magnetic fields, the spatially uniform (k = 0) superfluid
phase and the Mott insulating state, known from the con-
ventional Bose-Hubbard model, are reproduced. When the
magnetic flux per plaquette ® exceeds /2 [see Fig. 2(a)
for the definition of plaquette], where ®, = hc/e is the
fundamental flux quantum, we find that a novel finite-
momentum (k = 77) superfluid phase is realized. This su-
perfluid phase is spatially modulated and is characterized

0031-9007/08/100(13)/130402(4)

130402-1

PACS numbers: 05.30.Jp, 03.75.Hh, 03.75.Kk

by quantized fluxes of alternating sign for adjacent pla-
quettes. Our work thus points out the possibility of realiz-
ing a novel spatially modulated superfluid with ultracold
bosons, which exhibits a characteristic momentum spec-
trum. An extension of our work for fermions offers the
possibility of simulating various strongly correlated sys-
tems, such as the mean-field Hamiltonian of Affleck and
Marston [10], proposed in the context of high-7,. super-
conductors [11], and the case of massless Dirac spectra, as
realized in graphene [12].

Effective Hamiltonian.—We first consider bosonic
atoms trapped in a 2D square optical lattice potential
V,(r) = —V,[sin®(kx) + sin?(ky)] with an additional
time-dependent potential Vr(r, 1) = kV,(r) X
cos[28(r) — Q1] S(r) = tan™ {[sin(kx) — sin(ky)]/
[sin(kx) + sin(ky)]}, which acts as a collection of micro-
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FIG. 1 (color online). Phase diagram with respect to the
chemical potential w, the interaction parameter U, the hopping
amplitude J, and the scaled magnetic flux W. Within the three-
dimensional lobes a gapped Mott-insulator phase prevails.
Outside these lobes the system is superfluid. For small magnetic
fields (W/J < 1) the superfluid is spatially uniform, while for
large magnetic fields (W/J > 1), a quantized staggered rota-
tional flux arises. The white dashed line indicates the (u/U =
2 — /2) plane analyzed in detail in Fig. 2.
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FIG. 2 (color online). (a) The bipartite lattice comprises sites
labeled by “A” and “B.” The gray rectangle identifies a single
plaquette. The solid arrows indicate the tunnelling currents
driven by Vi(r, r). (b) Phase diagram within the (u/U =2 —
v/2) plane spanned by the dashed white line and the W axis in
Fig. 1.

rotors, each applying angular momentum to a single pla-
quette, with alternating signs for adjacent plaquettes. Here,
k = 271/ X and A is the wavelength of the optical potential.
The term Vg(r, 7) can be implemented experimentally by
means of a bichromatic light-shift potential [13]. The well
depth V|, > 0, the oscillation frequency () and the coupling
strength « € [0, 1] are adjustable parameters in experi-
ments. We denote the sublattices of the bipartite square
lattice by A and B [cf. Fig. 2(a)] and define four vectors
e, = —e;=(A/2)%, e, =—e;=(A/2)) connecting
each A site to its four B neighbors. Upon the assumption
that the atoms in the optical lattice are restricted to the
lowest Bloch band and that Vg(r, t) does not induce inter-
band transitions, the system can be described by a Bose-
Hubbard model with time-varying hopping and energy
offset [1,13]

[:I(t) == Jl(t){&I&r+e, + Hc}
reAl=1-4
L1 PN
+ Z er(t)nr + EU Z nr(nr - 1): (1)
reAeB reAeB

where a, and 4l are the boson annihilation and creation
operators on site r obeying the canonical commutation
relation [a,, a;r,] = 8y, Ay = ala, is the number operator,
J(t) = J + (—1)'kVyx; sin(Q2f) denotes the anisotropic
time-varying hopping, €.c, () = =2k V), cos({d1) is a
time-varying energy offset, and U is the onsite inter-
action energy. In terms of the Wannier function of the
lowest band w(r), we have J = [dxdyw*(x + A/4,y) X
[—%V2 +ViOIwlx — A/4y),  x1 = [dxdyw*(x +
A/4, y)lsin®(kx) — cos®(ky)Jw(x — A/4, ), X2 =
[ dxdylw(x, y)|*[cos(kx) cos(ky)], and U o« (a,/m) X
[ dxdy|w(x, y)[*, with the atomic mass m and the
s-wave scattering length a;. We note that by using
Feshbach resonances, the s-wave interaction can be con-
sidered as another experimentally tunable parameter. Upon
expressing all terms with harmonic time dependence in

terms of a quantized auxiliary bosonic field and integrating
out this field, similarly as in Ref. [2], we find the effective
Hamiltonian

A

Hoy~— {Icle®=Yata,,, +Hc}
reA,l=1-4
1 o
+5U > e — 1), )
rcAeB

where the anisotropic complex hopping amplitude is
given by |c| =+J?+ W2, 0 =tan '(W/J) with W =
2k*V2x1x2/hQ. The Aharonov-Bohm phase 6, picked
up by the bosons when tunneling along the edge of a
plaquette, may be interpreted as resulting from an effective
staggered magnetic field with a magnetic flux per plaquette
® = (20/7)®P,. This artificial gauge field arises due to the
7/2 phase lag between the time-varying hopping terms
Ji(r) and the energy offset terms €.c, (f), which assigns a
sense of rotation to each plaquette. In Eq. (2) we have
neglected nonlocal negative ring exchange terms with
energy (kVjx;)?/2hQ which may be tuned to be 2 orders
of magnitude smaller than all other terms. We also omitted
a nonlocal term composed of summands 7,7, describing
interaction between distant lattice sites mediated by the
retroaction of the atoms upon the light-shift potential. This
term is expected to be significant, if the light-shift potential
is produced inside a high-finesse optical cavity [14]. For
conventional light-shift potentials produced by superposi-
tion of laser beams, which we consider here, it is irrelevant.
Nonetheless, this term does not alter the mean-field results
presented below.

For an optical lattice loaded with fermionic atoms, a simi-
lar derivation leads to an effective staggered magnetic field
as well. The single-particle spectrum can be obtained for
both, fermions and bosons, by expressing the kinetic terms
in Hamiltonian (2) in momentum space with two inde-
pendent amplitudes dy = S,exdre™ ™, by =3 epdre™T,
and applying the canonical transformations & =
[(er/lexDay + b /V2, B = [—(e;/leDay + b ]/V2.
Here, € = 2|cle’® cos[k™a] + 2|cle " cos[k™a] is the
generalized lattice dispersion, with k= = (k, * k,)/2 and
a = A/+/2. We then find
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(a)

0 - 0
k,aln k,aln

FIG. 3 (color online). Single-particle spectrum for (a) 6<
7r/4, with the minimum at the origin, and (b) 6 > /4, with
minima at the Brillouin zone edges ( * 7/a, *m/a).
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E;; = £2|c|[cos*(kTa) + cos*(k~a)
+ 2cos(k*a) cos(k~a) cos(260)]'/2, 3)

where the lower (upper) branch corresponds to the in-(out-
of-)phase mode ,@k (&y) between the sublattices. For the
fermionic system at half-filling, the single-particle spec-
trum exhibits two inequivalent anisotropic Dirac cones; see
Fig. 3. Their slope can be tuned via the staggered magnetic
field, thus resembling the physics of graphene with aniso-
tropic hopping arising under uniaxial pressure [15].
Furthermore, at # = /4 and negligible interactions, the
system simulates the Affleck-Marston Hamiltonian [10],
wherein a staggered 7-flux phase is proposed to describe
the pseudogap regime of high-7, superconductors.
Although several experiments were suggested to probe
the relevance of this phase, the problem remained open
due to unavoidable effects of disorder [16]. The system we
consider thus offers an opportunity to study such phases in
a highly controllable environment.

Mean-field theory for the bosonic system.—We antici-
pate the bosonic system to exhibit the well-known quantum
phase transition from a superfluid to a Mott insulating
phase as the parameter U/4|c| is increased [1]. The phase
boundary between the two phases is determined by a
straightforward generalization of the functional integration
method presented in Ref. [17]. The partition function is
written in terms of an imaginary-time functional integral
Z= [Da*Daexp{—S[a", al/h} with the action S[a", a] =

g/k"TdT[Zraf(T)(haf — p)a (1) + Hyl, where T is the
temperature and u the chemical potential. In the Mott
regime, we introduce the order parameter .(7) (a
Hubbard-Stratonovich field) to decouple the hopping
term and upon integrating out the boson fields (a*, a),
the effective action (up to quadratic order) gives the zero-
temperature quasiparticle(hole) energy dispersion,

ah U lex| 1
N L M L S

where hwy, = +/|€x|> — (4n + 2)|e|U + U? is the energy
required for creating a quasiparticle-quasihole pair and 7 is
the lattice filling factor, given by the ratio between the
number of bosons N and the number of sites N,. The phase
boundary between the Mott and the superfluid states can
then be determined by the condition that the excitation
becomes gapless hwy = 0, which is shown in Fig. 1 as the
generalized Mott lobes. For brevity we henceforth concen-
trate on the (u/U = 2 — +/2) plane spanned by the dashed
white line and the W axis in Fig. 1 [cf. Fig. 2(b)]. We note
that for @ > 77/4 the low energy excitations in the gapped
Mott phase carry a finite, rather than zero, lattice momen-
tum. This implies that the associated critical phenomena at
the phase boundary between the Mott-insulator and the
staggered-vortex phase could be different from the usual
universality class of the O(2) quantum rotor model for the

superfluid-Mott transition in the Bose-Hubbard model
[18].

In the superfluid regime, however, the staggered mag-
netic field drives the system into distinct superfluid
phases. Even though interactions induce a finite quantum
depletion, for a system of N weakly interacting bosons,
Bose-Einstein condensation (BEC) takes place at the low-
est single-particle state. For 6 < 7r/4, BEC occurs at the
k = (0,0) = 0 state, giving rise to a uniform superfluid
with the many-body ground state |W) o (ﬁAg)N |0y =
(S renondi )N10). For 6 > 7/4, new absolute minima de-
velop at the Brillouin zone edges k = (*7/a, *7/a) =
7r for which condensation takes place; see Fig. 3. Be-
cause of the equivalence of the four minima in the recipro-
cal space, the new many-body ground state can be written
as W) o (BOVIO) = [So(al +iali, = afie e, =
iaf, . )]V0) with r =2r' and r' € A ® B. The angular
phases of the order parameter differ by /2 between
neighboring lattice points, and there is a quantized flux
on each plaquette, with alternating sign for adjacent pla-
quettes. Thus, for the BEC at k = 7, the system is char-
acterized by a vortex-antivortex lattice with a periodicity
A/+/2, namely, a staggered-vortex superfluid phase. This
phase possesses a definite chirality that is commensurate
with the staggered magnetic field, a feature which is not
present in the uniform superfluid phase. To confirm that
distinct superfluids are stabilized, we employ a varia-
tional mean-field ansatz for the ground state |& o) =
(e7i¢/2 (:os(a'),é(;r + ¢/¢/25in(o) 1)V]0) and minimize the
expectation value with respect to the Hamiltonian (2). The
uniform superfluid (o = oy =0) and the staggered-
vortex phase (o = oy = 7/2) are indeed the absolute
minima of the mean-field energy for # < 7/4 and 6 >
7/4, respectively. Furthermore, the stability of both
phases can be verified by examining the energy cost for
deviating from the condensate (ﬂ>|ao+g> =Eup +
€24N|c|[\/2| sin(7/4 — 0)| + (UN)/(8|c])] + O(e*) with
oy €{0, w/2} and Eyp = —4N|c|cos(6). Finally, we
note that as the system is tuned across the 6§ = 77/4 line,
o changes discontinuously by a value of 7/2, suggesting
that the two superfluid phases are separated by a quantum
first-order phase transition line within this variational
mean-field analysis. At this line, both phases are degener-
ate in their mean-field energies, with a finite energy barrier
A ~ UN?/8N, between the two minima.

Fluctuations. —Following the Bogoliubov theory for a
weakly interacting Bose gas, we derive the energy spectra
of the superfluid phases. We consider the Hamiltonian (2)
in the grand-canonical ensemble and make the substitution
for the condensation mode ﬁko — /Ny + Bko, where N, is
the condensate number and ky = 0 (ky = ) for the uni-
form superfluid (staggered-vortex) phase. Choosing the
chemical potential at its mean-field value, u = —|ey | +
nyU/2 and keeping terms up to quadratic order in the

130402-3



PRL 100, 130402 (2008)

PHYSICAL REVIEW LETTERS

week ending
4 APRIL 2008

+2hk

FIG. 4 (color online). Schematic of the momentum spectra for
the uniform superfluid (a) and the staggered-vortex superfluid
(b). The colored areas in the centers illustrate the first Brillouin
zones with (b) and without (a) the staggered magnetic field.

fluctuations, the Hamiltonian becomes,
~_1 L Data
I{k0 = _ZnoUNO + Z{(lEkl - |€k0| + §n0U>akak
1 AT A
+ <_|€k| — leg,| + 5”0U>Bkﬂk
1 it . At A
+ [gnoUAk,ko(alatk + B]tﬁtk)

1 ia
+ Z nOUBkYkOalBik + H.c. :|},
where ny = Ny/N; is the condensate density, Ay o = By , =
1 +exp(—2igg), Bro=Ax,=1—exp(—2i¢y), and
¢ = arg(ey). The Hamiltonian can be readily diagonal-
ized by a Bogoliubov transformation to yield the spectrum

hoy k, = \/|6k|2 + lex,|* + noUlex,| = noUlegl,/Gx x,

where G0 = cos*(¢i) + 4lellleol/noU + 1]/n,U,
and Gk,ﬂ' = Sin2(¢k) + 4|E'7T||:|67T|/nOU + 1]/”0(]
The lower branch of the spectrum is linear and

gapless at long wavelength hoyg g, =
Vel cos(0 — koa/2)[4lclcos(0 — kya/2) + nyU](k — k),
corresponding to the Goldstone mode of the broken gauge
symmetry.

Experimental signatures.—The characteristic momen-
tum spectrum of the staggered-vortex phase provides a
clear signature to identify this state experimentally by
imaging momentum space using standard ballistic ex-
pansion techniques. The momentum distribution can be
expressed as (VT(k)W(k)) = |W(k)|*>S(k)Sp(k), where
W(k) is the Fourier transform of the Wannier func-
tion, Sp(k) = Y reaone ™ R|* is the structure factor
of the Bravais lattice, and Sp(k)=3, cq234 X
eik’(rv’r#)<€z:ry&rﬂ) is the structure factor of a plaquette.
Here, r, denote the four corners of a plaquette and a,,
are the corresponding boson operators. We may write
Sp(k) = nlY ,eqa39€™ ™ e |? with ¢, = 0 for the uni-
form superfluid |¥,) and i, = var/2 for the staggered-
vortex superfluid |W,). As illustrated in Fig. 4, the two
cases display distinct structures of Bragg maxima, directly
observable in experiments.

In conclusion, we have shown that anisotropic and time-
varying hopping terms in a 2D optical lattice give rise to an
effective staggered magnetic field. For the bosonic system,
it leads to a novel kind of superfluid phase characterized by
a quantized staggered rotational flux. For the system real-
ized with fermionic atoms, it gives rise to anisotropic Dirac
spectra at half-filling. The tunability of the interaction
terms and the addition of optical disorder potentials allow
for systematic simulations of various strongly correlated
systems, such as graphene and high-7,. superconductors.
Another exciting direction for future work could be the
search for quantum Hall physics in the system. Finally, we
remark that the experimentally accessible Hamiltonian (1)
offers a wider parameter space than presently considered in
this work. The inclusion of non-negligible ring exchange
interactions, for example, may offer the opportunity to
realize exotic quantum insulators [2].
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