PRL 100, 128302 (2008)

PHYSICAL REVIEW LETTERS

week ending
28 MARCH 2008
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Applications of probe diffusion in polymer matrices typically envision that for particles sizes (R) larger
than the correlation length of the polymer solution (£), the probe (at long times) diffuses as in a continuum
polymer solution. We present simulation results for probe diffusion in rod solutions which challenge this
conventional wisdom and indicate a new mechanism of a probe diffusion operative for R > &. Our
simulation results are rationalized by scaling arguments invoking a novel mechanism of the constraint
release motion of the rods, and suggest that the dynamical characteristics of the polymer matrix also
proves important in developing a complete description of the probe motion.
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The diffusional characteristics of tracer particles in
crowded solutions of flexible and rigid rod macromole-
cules prove extremely important for diverse biological
phenomena ranging from metabolism, protein-protein in-
teractions, enzyme reactions and gene therapy [1]. Also,
many recent experimental developments rely on the diffu-
sional characteristics of colloidal probes to provide infor-
mation on both the mechanical properties and the structural
changes of biological and synthetic macromolecular ma-
trices [2—4].

Of interest in this Letter are the laws that govern the
long-time diffusion coefficients of tracer probes in macro-
molecular matrices. We discuss these issues in the context
of the system of spherical probes diffusing in rigid rod
solutions which serves as a useful model for many appli-
cations. There are three distinct length scales: The size of
the probe R, the length of the rods L, and the correlation
length of the rod solution & (which scales as ¢~!/2, where ¢
denotes the number concentration of the rods [5]). Theories
of probe dynamics typically assume that for R = £, the
solvent behaves as a continuum fluid and that the probe
diffusivity D is inversely proportional to the solution vis-
cosity n, (““continuum” picture) [6]. In contrast, for R < &
(referred to below as the ‘“mesh” picture), a picture of a
probe diffusing in a static porous medium of pore size &
has been used in a variety of hydrodynamic [7], phenome-
nological [8], and stochastic models [9] to propose func-
tions of the form: D = exp[—(R/&)%]/no (g, denotes the
solvent viscosity) with exponents 6 ranging from 0.5-1. In
sum, the current theories posit two main modes for probe
diffusion with a crossover between them at R = £.

In this Letter, we use computer simulations and scaling
ideas to question the existence of only two dominant
modes of diffusion, and whether indeed the length scale
governing the crossover to continuum description is the
correlation length £ of the rod solution. Resolution of these
issues has several implications. On the one hand, the
question of the crossover length scale is critical for the
interpretation of experimental tools such as microrheology
which are theoretically founded upon a continuum picture
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[2,3]. Moreover, many of the above-discussed biological
applications fall in the regime where R =~ £ [10], for which
the theoretical descriptions are less well-grounded and in
need of possibly new insights.

Computer simulations to probe the above question
proves demanding due to the need to account faithfully
for (i) the dynamics of the probe, matrix, and the solvent
units, (ii) the probe-matrix and matrix-matrix steric inter-
actions at finite concentrations of the matrix, and (iii) the
hydrodynamic flows set up by the motion of the particle. In
this study, we overcome these challenges by adapting a
recently developed explicit solvent simulation approach
which combines the ingredients of molecular dynamics
and dissipative particle dynamics simulation (DPD) meth-
odologies [11]. In this approach, the solvent particles are
represented at a coarse-grained level as spherical units
interacting by soft repulsive potentials of the form: Uy, =
a/2[1 — r/rP(r <rg), where a and ry represent, re-
spectively, the strength and range of interaction. In con-
trast, the rod particles are represented by a string of
spherical monomers linked in a ‘“shish-kebab” model,
interacting pairwise by steeply repulsive Lennard-Jones
(LJ) potentials truncated at the attractive upturn (the loca-
tion of which was fixed at rg). The probe is also modeled
as a spherical particle interacting with the rod monomers
and the solvent units by repulsive LJ potentials truncated at
the attractive upturn. The rod-solvent interactions are
chosen to be identical to the solvent-solvent interactions
[12]. To incorporate hydrodynamical phenomena, we re-
tain the original DPD approach [13], which incorporates
momentum conserving velocity dependent forces (between
rod-solvent, probe-solvent, and solvent-solvent units)
along the line of centers of the interacting particles.

In a recent article we used the above simulation ap-
proach to study dynamics and rheology of rod solutions
from dilute to concentrated regimes and demonstrated
excellent agreement with the corresponding theoretical
predictions [14]. For the present research, we studied the
dynamics of probes of sizes R = 2, 3, 5, 6, 7, and 8 in rod
solutions of lengths L = 10, 15, and 20 (all lengths non-
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dimensionalized by r) at concentrations 0.7 < cL* < 85
which places our simulations in the regime 0.3 < R/¢ <
20 [15]—i.e. predominantly in the regime wherein the
continuum picture is expected to be applicable. Other
numerical details and interaction parameters adopted in
this study are identical to those used in our earlier article
[14]. We determined sedimentation coefficients by apply-
ing a small drag force to the tracer probe and calculated its
average drift velocity v, in the direction of applied force
fa- The diffusion coefficient of the probe was then ex-
tracted using the fluctuation-dissipation theorem (FDT) as:
D = f;/v, (units of kzT) [16]. The simulations were
typically repeated for different drag forces to verify the
linearity of the force-velocity relationship.

In Fig. 1 we display the normalized probe diffusivities D
and the inverse of the solvent viscosities 7, as functions of
cL? for a number of different pairs of probe sizes R and rod
lengths L. As expected from theories for rheology of rod
suspensions, 7,/m, displays a very good collapse as a
function of ¢L? [5] (minor deviations can be attributed to
the role of hydrodynamic interactions [14]). If the contin-
uum picture were applicable for probe diffusion, we expect
D/Dy « ny/m,. In contrast, we observe that D/D,, is a
function of both R and L (in addition to ¢L?) and is also
consistently higher 1,/ 17;.

At first sight, the results presented in Fig. 1 appear
qualitatively consistent with the trends discussed in the
introduction. Indeed, small probe sizes may be in the
mesh regime of probe diffusion for which long-time dif-
fusivities are expected to be much greater than the contin-
uum values. In contrast, as observed for R = 7 and 8§,
larger probes do show a trend approaching continuum
regime which corresponds to the behavior expected for
R/é€= 1. To examine this issue more carefully, in
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FIG. 1 (color online). Rod concentration (expressed as cL?)
dependencies of the probe diffusivities D (for different R, L pairs
indicated) normalized by its value in the pure solvent medium
Dy, and the inverse suspension viscosities 77, normalized by the
solvent viscosity 7, (open symbols) for rod suspensions [14].
The dotted line is a guide line depicting the concentration
dependencies of the inverse suspension viscosities.

Figs. 2(a) and 2(b), we display the values of D/D, and
Dn,/Dyn, as explicit functions of R/&. Consistent with
the mesh regime, it is seen in Fig. 2(a) that for the (limited)
results in the regime R/& < 1 the D/D, values for the
different radii does appear to approach a universal function
(albeit, lack of numerical resolution precludes a definitive
conclusion). However, Fig. 2(b) suggests a more profound
result that for R/& = 1 our simulation results do not ap-
proach the trend consistent with the continuum expectation
that Dn,/Dgn, = constant. This result raises the question
whether the mode of diffusion switches to the continuum
picture for R = £, or whether a different mechanism be-
comes operative after the mesh regime.

We note that microrheology experiments in the contin-
uum regime have also observed deviations between probe
diffusivities and the macroscopic solution viscosities, and
have attributed them to the presence of a ““depletion” zone
around the probe with rheological characteristics different
from that of the bulk solution [2,17]. To examine whether
such effects can explain the deviations in Fig. 1, we probed
the local density distribution of the rod monomers around
the test particle. We then used such results in a shell model
[17] envisioning the motion of the probe as that of a
particle surrounded by a layer with solvent viscosity 7
moving as a composite particle in a solution of viscosity 7,
[18]. Representative results of such predictions are dis-
played Figs. 3(a) and 3(b) where it is seen that while the
depletion effects do enhance the expected values of probe
diffusivities in the continuum picture, they still do not
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FIG. 2 (color online). (The symbol legends are identical to
Fig. 1.) Probe diffusivities D normalized by: (a) Dy;
(b) Dymo/ms, and displayed as a function R/£. (b) displays
only results corresponding to R/ & > 2.
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FIG. 3. A comparison of our simulation results (closed, unconnected symbols) with the predictions of the probe diffusivity
(connected open symbols) based on the shell model of Tuinier [17]: (a) R = 2; (b) R = 5.

suffice to explain our simulation results. In turn, this dem-
onstration confirms that our simulation results are not a
manifestation of the continuum regime of probe diffusion.

To rationalize our results, we suggest a mechanism of
constraint release (CR) motion of the spherical probes for
entangled rodlike solutions. We point out the analogy
between the motion of the probe in the matrix and the
motion of a long tracer polymer in a matrix of shorter
entangled polymers. In the latter instance, the longer poly-
mer has the same option of dragging the shorter polymers
with it as it moves, which in turn would lead to the classical
continuum prediction of a Stokes diffusivity. Alternatively,
the longer polymer may move (a tube diameter) when one
of its entanglements with the shorter polymers is released
due to the reptation of the shorter polymer. These two
mechanisms operate simultaneously in a competitive man-
ner such that the effective tracer diffusivity is determined
by the mechanism which dominates [19]. We believe that a
similar scenario accompanies the motion of a spherical
probe for R > £. In such a regime the probe is trapped in
the mesh of rods, and the scenario of the particle dragging
the rods is equivalent to that embodied in the continuum
picture and leads to a diffusivity which scales as 7; !
(except insofar as possible depletion effects). Alter-
natively, the translational diffusion of a constraining (en-
tangled) rod may release and thereby open up a new space
for the probe to occupy. Successive constraint release
events may thereby facilitate diffusion over longer time
scales [Figs. 4(a) and 4(b)].

We estimate the time and length scales accompanying
the constraint release motions of the probe in entangled rod
solutions [cf. Fig. 4(c)]. If we consider a hypothetical one
dimensional motion of the probe, over a length A, the
number of potential obstacles to its motion can be esti-
mated as: ngz ~ cR(R + L)A. The average distance be-
tween the obstacles A can then be estimated as
A~ A/ng =[R(R + L)c]™'. A represents an estimate for
the step size for the particle’s random motion arising from
the constraint release mechanism. If we now consider a
specific obstacle (rod) blocking the motion of the probe, an
estimate of the survival time scale of this obstacle is 7 «
(R + L)*/Dy, where Dy denotes the translational diffusion

coefficient of the rods parallel to its own axis (the perpen-

dicular component of D is expected to be negligible in

entangled solutions). Using the above, we obtain an esti-

mate for the constraint release probe diffusivity as
A2 D

Dconsmiz 2 4 3)2°
T a*(a+ 1D)*cl?)

(D

where @ = R/L. Explicitly, D, is expected to scale R ™2
and (cL?)? (for R < L) in contrast to the R™! and 7!
[which in turn scales as (cL3)3 [5] ] scaling expected for the
Stokes-Finstein (SE) regime.

In Fig. 5 we display our simulation results for D/D as a
function of the parameter suggested by the above scaling
Eq. (1). We observe that in this representation, our diffu-
sivity results for all the probe radii and matrix conditions
show a very good collapse into a single universal func-
tional form which asymptotically approaches the depen-
dence predicted above. Considering the approximate
nature of our scaling estimates, this scaling collapse dem-

FIG. 4 (color online).

(a) and (b) A schematic of the mecha-
nism of constraint release for probes entangled in the mesh.
Translational diffusion of the shaded rod opens up space for the
particle to diffuse into; (c) a schematic illustrating the construc-
tion of our scaling idea.
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FIG. 5 (color online). A test of the scaling prediction [Eq. (1)]
underlying the CR mechanism. The points are our simulation
results for the diffusivities for different R, L combinations
indicated (D) values were obtained in our earlier study [14]).
The dashed line represents the slope of —1 predicted in our
model. The inset displays the data of Fig. 2(b) as a function of
R/L.

onstration serves as a strong validation of our hypothesis
that the CR mechanism rationalizes the simulation results
for probe diffusion.

It is of interest to compare the prediction of Eq. (1) with
the SE mechanism to determine if there is ever a crossover
from CR to the SE mechanism. If we compare (1) with the
SE prediction D/D, = ;! [using the asymptotic scaling
1, « (cL?)? [5]], we obtain a dominance of the SE mecha-
nism for R > L(cL?)'/5. This estimate for crossover ne-
glects the effects arising from the depletion of rods, which
as demonstrated in Fig. 3(b) would lead to a faster diffu-
sion than assumed in the SE mechanism. In combination
with the small value of the exponent of ¢L?, in experimen-
tal situations we expect the crossover to the continuum
picture occur at approximately R = L. This expectation is
consistent with the approach to the continuum prediction
seen for larger probe sizes in Fig. 1. More clearly, in the
inset to Fig. 5 we depict the results of Fig. 2(b) as a
function of R/L and observe an asymptotic approach to
the continuum limit for R/L =~ O(1) [20].

In conclusion, we have presented simulation evidence
for a new mode of transport of probe particles in rodlike
suspensions. This mechanism is expected to be operative
for the situation when the particle size ¢ < R < L and
postulates a constraint release motion of the rods aiding the
diffusion of the particles. This mechanism is shown by
scaling arguments and simulation results to lead to a non-
trivial dependence of the diffusivity upon the particle size
R and the concentration of the rod suspension c. Overall,
our results and the arguments presented challenge conven-
tional wisdom that the crossover to continuum regime of
probe motion occurs when the radius of the particle be-
comes larger than the correlation length of the solution. In

contrast, we suggest that accounting for the dynamical
characteristics of the matrix proves critical in developing
a complete description of the particle motion. This con-
clusion is expected to have ramifications for a wide range
of applications and experimental tools which rely on the
diffusional characteristics of probes in macromolecular
solutions.
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