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Cable equations with fractional order temporal operators are introduced to model electrotonic prop-
erties of spiny neuronal dendrites. These equations are derived from Nernst-Planck equations with fra-
ctional order operators to model the anomalous subdiffusion that arises from trapping properties of
dendritic spines. The fractional cable models predict that postsynaptic potentials propagating along den-
drites with larger spine densities can arrive at the soma faster and be sustained at higher levels over longer
times. Calibration and validation of the models should provide new insight into the functional implications
of altered neuronal spine densities, a hallmark of normal aging and many neurodegenerative disorders.
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Most of the brain’s gray matter is composed of spiny
dendrites. Dendritic processes respond to synaptic inputs
by relaying postsynaptic potentials to the cell body or
soma. The potentials are summed at the soma and the
cell fires an action potential or spike if a threshold potential
is exceeded. The interspike interval determines the firing
rate of nerve cells which is critical for normal cognitive
functioning. An ongoing dialogue between theory and
experiments over many decades has revealed the detailed
electrotonic properties of neuronal dendrites and dendritic
trees [1]. The centerpiece of this is the cable equation [2,3]

 rmcm
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@t
�
drm
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@2V

@x2 � V � rmie; (1)

which models the spatiotemporal evolution of the mem-
brane potential Vm, relative to the resting membrane po-
tential Vrest, along the axial x direction of a cylindrical
nerve cell segment. The other parameters in the model
represent the specific membrane resistance rm, longitudi-
nal resistivity rL, membrane capacitance per unit area cm,
diameter d, and an external injected current per unit area ie.
In an infinite length cable described by Eq. (1) the steady
state voltage attenuates in space by a factor 1=e over a

distance of � �
������
drm
4rL

q
and the spatially homogeneous volt-

age for a membrane patch attenuates in time by a factor 1=e
over a time � � rmcm, so that � and � are referred to as the
space constant and the time constant for the dendrite. The
cable equation can be obtained phenomenologically by
associating electrical properties with the cell membrane
[3] or derived physically from the Nernst-Planck equation
for electrodiffusive motion of ions [4].

Over the past few decades research on neuronal den-
drites has intensified [5] due to the discovery that dendrites
are highly active, with complex electrical and biochemical
signaling depending on both local spine structure and
density [6,7], and on voltage-gated ion channels [8].
These processes present challenges to the cable model

[9]. In this Letter we consider refinements of the passive
cable model (voltage-gated ion channels are ignored) to
incorporate dendritic spines (small protrusions extending
out from dendritic branches) [7,9]. The standard way to
model the effects of spines in the passive cable model is to
reduce the membrane resistance and to increase the mem-
brane capacitance, for an equivalent but smooth dendrite,
by a factor proportional to the increased membrane surface
area due to spines [9]. In this modification the time con-
stant is unaffected by spines but the space constant is
reduced; thus, the steady state voltage should attenuate
more strongly in space along spinier dendrites [9,10].

A recent study [11] on spiny Purkinje cell dendrites
showed that spines trap and release diffusing molecules
resulting in anomalously slow molecular diffusion, along
the dendrite. The diffusive spatial variance hr2�t�i of an
inert tracer was found to evolve as a sublinear power law in
time, i.e., hr2�t�i � t� with 0<�< 1. The diffusion
became more anomalous (smaller �) with increasing spine
density [11]. In this Letter we derive fractional cable
equations from fractional Nernst-Planck equations, intro-
duced to model anomalous electrodiffusion of ions in spiny
dendrites, and we investigate the solutions of the fractional
cable equations to provide new insights into the electro-
tonic effects of the trapping properties of spines.

The simplest model for anomalous diffusion replaces the
diffusion constant D with a time-dependent diffusion co-
efficient D�t��1 in the standard diffusion equation. This
models fractional Brownian motion (FBM) that can be
derived from a Langevin equation with a friction memory
kernel and power law correlated noise [12]. A different
model for anomalous diffusion includes a temporal deriva-
tive with fractional order 1� � operating on the spatial
Laplacian in the diffusion equation [13]. This fractional
equation has been derived from mesoscopic continuous
time random walks (CTRWs) with a power law waiting-
time distribution  �t� � t��1��� [13], characteristic of traps
[14]. In the absence of experimental evidence to the con-
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trary, it is prudent to consider both FBM and CTRW based
anomalous diffusion models in fitting experiments [15,16].

The Nernst-Planck equation is the fundamental macro-
scopic model for the microscopic motions of ions in nerve
cells. This model takes into account random motions of the
ions as well as the drift of ions due to the electric field of
the membrane potential (due to different ionic concentra-
tions inside and outside the cell membrane). As a starting
point, to model anomalous electrodiffusion, we consider
the following variant of the Nernst-Planck equation:
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Dk��k;t�CkrVm

�
: (2)

In this equation, Ck is the concentration of the kth ionic
species, F is the Faraday constant, R is the universal gas
constant, and T is the temperature. The difference between
this model and the standard Nernst-Planck equation is that
Dk��k; t� is not a constant for a given species k but is a
parametrized time-dependent operator with scaling pa-
rameter 0< �k � 1. As discussed above we consider the
two possibilities related to FBM and CTRWs, respectively:
(i)

 D k��k; t� � Dk��k��kt�k�1 (3)

where Dk��k� has units of m2s��k , and (ii)

 D k��k; t� � Dk��k�
@1��k

@t1��k
; (4)

where @1��

@t1��
is the Riemann-Liouville fractional derivative

operator defined by
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In the following it is also useful to define the ‘‘normalized’’
operators D	��k; t� �Dk��k; t�=Dk��k�. Importantly, in
both the standard Nernst-Planck equation (� � 1) and
the fractional Nernst-Planck equations (0<�< 1) the
effects of ionic diffusion are not isolated to the Laplacian
term, but they are also manifest in the drift term, through
the dependence on the diffusion ‘‘constant.’’ It follows that
even if concentration gradients are sufficiently small for
the Laplacian term to be neglected, alterations in the
environment that affect ionic diffusion would also affect
the drift term. A second point to note is that in the frac-
tional Nernst-Planck models the electric field force is a
function of the ionic concentrations. As a result these
models cannot be derived from CTRWs via fractional
Fokker-Planck equations with external time independent
forces [17,18]. The fractional Nernst-Planck models do,
however, capture this effect; variations in the time-
dependent force field are driven by the same temporal
operator that affects variations in the time-dependent ionic
concentrations. This contrasts with the fractional Fokker-
Planck equations with external time-dependent force fields
where an effective temporal subordination of the external
force to the random walks is not appropriate [19].

The standard passive cable equation for a cylindrical
nerve cell segment, with diameter d much smaller than the
length ‘, has been derived by Qian and Sejnowski [4] from
the standard Nernst-Planck equation. We follow this ap-
proach in deriving the fractional cable models for spiny
dendrites. First we integrate Eq. (2) in axially symmetric
cylindrical coordinates over the circular cross section of
the neuron, with zero flux of ions at the center. This results
in
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where x is the longitudinal coordinate, r is the radial
coordinate, and Jk denotes the radial flux of ionic species
k across the membrane. As in the standard cable theory we
model the membrane potential as [20]

 Vm�x; t� � Vrest �
Fd
4cm

X
k

zk
Ck�x; t� � Ck;rest�; (7)

where Ck;rest is the resting concentration of the kth ionic
species. We also follow the standard assumption that the
axial ionic concentration gradients are small (@Ck=@x �
0), but the prefactor Fd

4cm
is large (@Vm=@x 6
 0) [4]. In ad-

dition we assume that the trapping effects due to the ge-
ometry of spines are similar for different species of mobile
ions (�k � �). Using these results in Eq. (6) we obtain

 cm
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�
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�
� im � ie; (8)

where
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defines a modified longitudinal resistivity rL��� with units
of �ms��1, im �

P
kzkFJk is the total ionic transmem-

brane current per unit area, and ie has been included as an
injected current per unit area.

As an alternative to the physical derivation above, the
fractional cable equation, Eq. (8), can be obtained phenom-
enologically by combining the standard current continuity
equation

 cm
@Vm
@t
�
d
4

@IL
@x
� im � ie (10)

with the longitudinal current IL described by a fractional
variant of Ohm’s law,

 IL � �D
	��; t�

1

rL���
@Vm
@x

: (11)

Allowing for a similar fractional flux for the ionic trans-
membrane current, we write

 im � ����D	��; t�
Vm � Vrest

rm
; (12)
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where � is the exponent characterizing the anomalous flux
across the membrane and ���� is an additional parameter
with units of s1��. It is possible to absorb ���� into a
modified specific membrane resistance rm��� � rm=����,
identifying ���� as the effect of anomalous flux across the
channels on the specific membrane resistance, and ��1� �
1. The fractional order operator D	��; t� would also apply
to any external current ie carried by ions traversing the
membrane. Equations (11) and (12) can be interpreted as
either an aged linear response [21] or a retarded linear
response [22], if D	��; t� has the form of Eq. (3) or
Eq. (4), respectively.

Equations (8) and (12) can be combined to arrive at the
linear fractional cable equation
 

rmcm
@V
@t
�

drm
4rL���

D	��;t�
�
@2V

@x2

�
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where V � Vm � Vrest. The above model yields a nontri-
vial steady state solution if the exponents � and � are
equal. To investigate further solutions of Eq. (13) it is
useful to consider the explicit dimensionless forms, related
to Eqs. (3) and (4), respectively:
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where T � t
�m

is the dimensionless time variable, X �

x��1���=2
m =

������
drm
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q
is the dimensionless space variable, �2 �

�������1
m is a dimensionless function of �, and the sub-

scripts I and II are used to differentiate the two anomalous
diffusion models.

The fundamental solutions of Eqs. (14) and (15) in the
case of infinite cables with no external current are as
follows:

 GI�X; T� �
1������������

4�T�
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�
�
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4T�
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�
(16)

and [24]
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where H is a Fox function [13]. Both of these solutions
reduce to the standard fundamental solution for an infinite
cable in the case � � � � 1. In the remainder of this Letter
we consider solutions for � � � � 1. Solutions with � �

� are described elsewhere [23]. GI�X; T� with � � � is
identical to the fundamental solution of the standard cable
equation, but at a later time. By contrast GII�X; T� with

� � � (see Fig. 1, left) is characterized by a sharp peak and
a heavy tail and is subordinated to the fundamental solution
of the standard cable equation [23]. In both fractional
models the peak height G�0; T� decreases more rapidly
with decreasing � at early times but this trend reverses at
longer times. The crossover time occurs at T � 1:0 inde-
pendent of � for GI but the crossover time increases with
decreasing � forGII (see Fig. 1, right). The major long time
effect of the anomalous electrodiffusion through the cyto-
plasm is to slow down the spreading of the membrane
potential along the membrane.

The fundamental solutions in Eqs. (16) and (17) can be
used to approximate the passive propagation of a potential
V�X; T� � G�X� X0; T� at position X and time T along a
spiny dendrite corresponding to an instantaneous injection
of unit current at position X � X0 with initially V�X; 0� �
0. Other current injections are described in [23].
Considering X � 0 as the position at the soma, we have
plotted V�0; T� versus T in Fig. 2 for impulsive current
injections at X0 � 1 for a range of � � � �
0:1; 0:2; . . . ; 0:9; 1:0. Common features in both fractional
cable models are (i) the peak potential at the soma arrives
earlier with decreasing � and (ii) after the arrival of the
peak, the potential initially attenuates more rapidly with
decreasing � but on longer time scales the potential is
higher for decreasing �. These features are consistent
with the faster early time but slower long time spreading
of the fundamental solution (cf. Fig. 1). Given that the
anomalous diffusion exponent � decreases monotonically
with spine density [see Fig. 3(B) of [11]] these results are
important for addressing the electrotonic significance of
decreasing spine densities that are characteristics of aging
[25,26], Down’s syndrome [27], and other neurological
disorders [6]. One interpretation of the results in Fig. 2,
which are dependent on calibration and validation of the
models (see below), is that an increased density of den-
dritic spines can serve to (i) compensate the time delay of
postsynaptic potentials along dendrites and (ii) reduce the
long time temporal attenuation of postsynaptic potentials.
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FIG. 1 (color online). Plots of GII�X; T� versus X (left) for � �
� � 0:5 at the two times T � 0:1 and T � 0:5 and plots of
GII�0; T� versus T (right) for � � � � 0:5, and � � � � 0:1. In
both plots, the dashed lines show corresponding solutions of the
standard cable equation � � � � 1.
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To investigate firing rates in the fractional cable models
we consider solutions to Eqs. (14) and (15) with @2V

@X2 � 0
for a homogeneous membrane patch, and with a constant
externally applied current density ie. The solutions are

 VI�T� � ierm � �Vo � ierm� exp���2T��; (18)

 VII�T� � ierm � �Vo � ierm�E����2T��; (19)

where Vo is the initial potential. The solutions are similar at
short times where the Mittag-Leffler function E��z� be-
haves like a stretched exponential [13], and at long times
both solutions decay to the steady state V � ierm. In both
models, the firing rate obtained by incorporating the solu-
tions in a simple passive integrate and fire model is well
approximated by [23]

 

1

Tfire
�

�
1

�2 ln
�
ierm � Vr
ierm � Vt

��
�1=�

; (20)

where Vt is the threshold potential for the cell to fire and Vr
is the reset potential after firing. The anomalous diffusion
does not affect the threshold current for nerve cell firing,
ie > Vt=rm, but it does impact on firing rates.

The fractional electrodiffusion models considered in this
Letter offer new cable equations for spiny neurons where
the spines trap and release diffusing molecules resulting in
anomalously slow diffusion. The additional scaling expo-
nent parameters appearing in temporal operators in these
equations enable predictions that cannot be obtained from
the standard cable equation with existing parameters ad-
justed to accommodate spines. The linear fractional cable
models, which both predict similar qualitative behaviors,
could be calibrated and validated through electrophysio-
logical experiments. From Eq. (18), or Eq. (19), with V0 �
0, the parameters rm,�, � could be fit to the time course of
the membrane potential from a patch recording in response
to a hyperpolarizing current ie < 0. Assuming standard
values for cm, and � � � in steady state, rL��� could be
obtained from steady state voltage attenuation measure-
ments using simultaneous patch-pipette recordings [28]
from the soma and the apical dendrite of a pyramidal
neuron. The model prediction for the different arrival times
at the soma of dendritic postsynaptic potentials as a func-

tion of spine density could be investigated qualitatively
through measurements of the time course of potentials at
the soma in response to currents applied in apical and basal
trees, where spine densities are different.
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FIG. 2 (color online). Plots of VI�0; T� versus T (left) and
VII�0; T� versus T (right) for � � � � 0:1; 0:2; 0:3; . . . ; 0:9; 1:0.
� increases in the direction of the arrow.
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