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We express the dynamics of domain walls in ferromagnetic nanowires in terms of collective
coordinates, generalizing Thiele’s steady-state results. For weak external perturbations the dynamics is
dominated by a few soft modes. The general approach is illustrated on the example of a vortex wall
relevant to recent experiments with flat nanowires. A two-mode approximation gives a quantitatively
accurate description of both the steady viscous motion of the wall in weak magnetic fields and its
oscillatory behavior in moderately high fields above the Walker breakdown.
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Dynamics of domain walls in nanosized magnetic wires,
strips, rings, etc. is a subject of practical importance and
fundamental interest [1,2]. Nanomagnets typically have
two ground states related to each other by the symmetry
of time reversal and thus can serve as a memory bit.
Switching between these states proceeds via creation,
propagation, and annihilation of domain walls with non-
trivial internal structure and dynamics. Although domain-
wall motion in macroscopic magnets has been studied for a
long time [3], new phenomena arise on the submicron scale
where the local (exchange) and long-range (dipolar) forces
are of comparable strengths [4]. In this regime, domain
walls are textures with a rich internal structure [2,5]. As a
result, they have easily excitable internal degrees of free-
dom. Providing a description of the domain-wall motion in
a nanostrip under an applied magnetic field is the main
subject of this Letter. We specialize in the experimentally
relevant case of thin strips with a thickness-to-width ratio
t=w� 1.

The dynamics of magnetization is described by the
Landau-Lifshitz-Gilbert (LLG) equation [6]

 

_m � �Heff �m� �m� _m: (1)

Here m �M=jMj, Heff�r� � ��U=�M�r� is an effective
magnetic field derived from the free-energy functional
U�M�r�	, � � gjej=2mc is the gyromagnetic ratio, and
�� 1 is Gilbert’s damping constant [7]. Equation (1)
can be solved exactly only in a few simple cases. Walker
[8] considered a one-dimensional domain wall m �
m�x; t� in a uniform external magnetic field H k x. At a
low applied field the wall exhibits steady motion, m �
m�x� vt�, with the velocity v 
 �H�=�, where � is the
wall width. Above a critical field HW � �M=2 magneti-
zation starts to precess, the wall motion acquires an oscil-
latory component, and the average speed of the wall drops
sharply. Qualitatively similar behavior has been observed
in magnetic nanostrips [1]; however, numerical studies
demonstrate that Walker’s theory fails to provide a quanti-

tative account of both the steady and oscillatory regimes
[2].

We formulate the dynamics of a magnetic texture in
terms of collective coordinates ��t� � f�0; �1; . . .g, so
that m�r; t� � m�r; f��t�g�. Although a magnetization field
has infinitely many modes, its long-time dynamics—most
relevant to the motion of domain walls—is dominated by a
small subset of soft modes with long relaxation times.
Focusing on soft modes and ignoring hard ones reduces
complex field equations of magnetization dynamics to a
much simpler problem. In Walker’s problem, the soft
modes are the location of the domain wall and the preces-
sion angle; the width of the wall is a hard mode [2,8].
Partition of modes into soft and hard depends on character-
istic time scales determined, e.g., by the strength of the
driving field.

Equations of motion for generalized coordinates f��t�g
describing a magnetic texture can be derived directly from
the LLG Eq. (1). They read

 Gij
_�j � Fi � �ij _�j � 0: (2)

Here Fi��� � �@U=@�i is the generalized conservative
force conjugate to �i, while �ij � �ji and Gij � �Gji

are the damping and gyrotropic tensors with matrix ele-
ments described below. The three terms in Eq. (2) can be
traced directly to the three terms in the LLG Eq. (1).

To derive Eq. (2), take the cross product of Eq. (1) with
m and express the time derivative of the magnetization in
terms of generalized velocities, _m�r; �� � �@m=@�j� _�j, to
obtain

 J
�
m�

@m
@�j

�
_�j � �

�U
�m
� �J

@m
@�j

_�j: (3)

Here J � �0M=� is the density of angular momentum.
Taking the scalar product with @m=@�i and integrating
over the volume of the magnet yields Eq. (2) with
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Fi��� � �
Z
�U=�m � @m=@�idV � �@U=@�i;

�ij��� � �J
Z
@m=@�i � @m=@�jdV;

Gij��� � J
Z

m � �@m=@�i � @m=@�j�dV:

(4)

Equations (2) and (4) generalize Thiele’s result [9] for
steady translational motion of a texture to the case of
arbitrary motion.

We apply this general approach to the dynamics of the
vortex domain wall [10], a texture that consists of three
elementary topological defects: a vortex in the bulk and
two half-antivortices confined to the edges [10]. A strong
shape anisotropy forces the magnetization into the plane of
the strip, with the exception of the vortex core [11]. Soft
modes of the wall are associated with the motion of these
defects, and we start with a model [12] parametrized by the
�X; Y� coordinates of the vortex (Fig. 1). In low applied
fields, the wall exhibits translational motion that can be
described by a single collective coordinate �0 � X, repre-
senting the softest (in fact, zero) mode with an infinite
relaxation time �0 � 1. At higher driving fields the steady
motion breaks down and the vortex core exhibits oscilla-
tions in both longitudinal and transverse directions accom-
panied by slow drift along the strip [2]. An additional
dynamical variable �1 � Y is required to describe the
dynamics. The new mode has a finite relaxation time �1.
In the vortex domain wall the characteristic time of the
motion is time T, and it takes the vortex to cross the strip.
When

 �0 > �1|���{z���}
soft

> T > �2 > �3 > . . .|���������{z���������}
hard

; (5)

the soft modes �0 and �1 must be treated as dynamical
variables. All other modes are hard; they adjust adiabati-
cally to their equilibrium values. As the driving field
increases, the vortex moves faster and eventually T will
become shorter than the relaxation time �2 of the next

mode, at which point the two-mode model will break
down. While �0 is infinite due to translational symmetry
of the wire, �1 is also long because of the special kinemat-
ics of vortex cores (see discussion below). If �1 � �2, we
expect to have a substantial range of driving fields where
the two-mode approximation applies.

Next we discuss the general aspects of the dynamics in
the one- and two-mode regimes. We approximate the po-
tential energy U�X; Y� by its Taylor expansion to the
second order in X and Y:

 U�X; Y� 
 �QHX� �rQHY � kY2=2: (6)

The X dependence comes in the form of the universal
Zeeman term �QHX, where Q � 2�0Mtw is the mag-
netic charge of the domain wall independent of the exact
shape of the texture. Zeeman force also pushes the vortex
in the transverse direction, which is reflected in the linear
in Y term, dependent on the vortex chirality � � �1 (�1)
for clockwise (counterclockwise) circulation. This term is
consistent with the lack of y � �y reflection symmetry;
the numerical coefficient is r 
 2. The transverse restoring
potential kY2=2 comes from the dipolar and exchange
energies.

The antisymmetric gyrotropic tensor GXY � �GYX �
4�qJt reflects a special topology of the vortex core,
namely, its nonzero Skyrmion charge [13]

 q � �1=4��
Z

m � �@xm� @ym�d2r � np=2; (7)

where n � �1 is the O�2� winding number and p �
Mz=jMzj � 
1 is the out-of-plane polarization of the
core [14]. Avortex core moving at a velocity V experiences
a gyrotropic force Fg � pGẑ� V, where G � 2�Jt is the
gyrotropic constant. The equations of motion (2) for two
dynamic modes read

 

�
�XX �XY � pG

�XY � pG �YY

�� _X
_Y

�
�

�
QH

�rQH� kY

�
: (8)

It is worth noting that typically �ij=G� 1, which means
that the viscous force is usually much weaker than the
gyrotropic one [15,16]. Therefore, a good starting point
would be the frictionless limit �ij � 0. In that case the
vortex moves along the lines of constant potential
U�X; Y� � const. From that one can deduce a crossing
time T � �=���0H� that is remarkably insensitive to the
detailed structure of the domain wall [17], as indeed is
observed experimentally [18]. However, the viscous loss of
energy is a crucial factor determining the average velocity
of a domain wall: any drift reflects the dissipation of the
Zeeman energy �QHX; in the frictionless limit the wall
exhibits no drift at all. Thus, one must include the effects of
viscous friction to evaluate the drift velocity.

A general solution of the equations of motion (8) reads

 X� Y�pG� �XY�=�XX � Vt� const; (9)

x

y

Y

X

+

FIG. 1 (color online). Top: A model of the vortex domain wall
proposed in Ref. [12]. Dashed lines denote Néel walls emanating
from the topological edge defects. Bottom: Absorption and
reemission of the vortex at the edge. Note the reversal of the
polarization p of the vortex core.
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 Y � Y0e�t=�1 � Y1�1� e�t=�1�; (10)

where �1 � �G
2 � det��=�k�XX� 
 G2=�k�XX�, Y1 �

��p� �g�GQH=�k�XX�, and g � �r�XX � ��XY�=G.
Two distinct regimes are found. At low applied field, the
equilibrium position of the vortex is inside the strip. After a
relaxation period of duration �1 �G2=�k�XX� the wall
reaches a state of steady drift with _X � V � �LFH
(�LF � Q=�XX is the mobility in low fields), and Y �
Y1 ��pGV=k. Note that in the absence of the gyrotropic
force, the relaxation time would have been much shorter,
�YY=k. The gyrotropic effect is apparently one of the
reasons why the mode �1 � Y is particularly soft.

Above a critical field the restoring potential fails to
prevent the vortex from reaching the edge, where it merges
with the half-antivortex. Our numerical experiments (see
below) indicate that the vortex is immediately reemitted
with the same chirality � and opposite polarization p and
starts to move towards the opposite edge (Fig. 1, bottom).
The critical fields are slightly different for p � �� and
p � ��: Hc
 � Hc0=�1� g�, where Hc0 � Vc=�LF �
kw=�2G�LF� and g� 1. In the narrow interval Hc� <
H <Hc� the vortex reaches a steady state for p � ��
but not for p � ��. As one might expect, the breakdown
of steady motion coincides with the softening of the first
mode: at H � Hc0 the crossing time T � 2�1.

Above Hc� the vortex crosses the strip regardless of its
polarization, and an oscillatory regime sets in. For the drift
velocity Vd we find

 Vd � �LFH �
2Vc�1� det�=G2��1

arctanh�Hc�=H� � arctanh�Hc�=H�
:

(11)

At first, the drift velocity drops precipitously (Fig. 2),
changing its order of magnitude from O���1� to O���.
In higher fields the velocity once again becomes propor-
tional to H, albeit with a smaller mobility �HF:

 

�HF

�LF
�
�r2�XX � 2r��XY � �YY��XX

G2 � 1: (12)

For a quantitative analysis [19] we turn to the model of a
vortex domain wall of Youk et al. [12]. The composite wall
consists of three 90� Néel walls comprising the half-
antivortices and a vortex that can slide along the central
Néel wall (Fig. 1). We used saturation magnetization M �
8:6� 105 A m�1, Gilbert damping � � 10�2, and ex-
change constant A � 1:3� 10�11 J m�1, yielding the ex-

change length 	 �
�������������������
A=�0M2

p
� 3:8 nm.

The damping coefficients �ij (4) are determined mostly
by areas with a large magnetization gradient rm, i.e., by
the 3 Néel walls whose width is of order the exchange
length 	, which gives �ij � �Jtw=	. The values of damp-
ing coefficients for w � 200 nm and t � 20 nm are as
follows [19]:

 �XX � 0:044G; �XY � 0:031�G; �YY � 0:049G:

The stiffness constant k of the restoring potential could
not be calculated accurately because two of its main con-
tributions, a positive magnetostatic term and a negative
term due to Néel-wall tension, nearly cancel out. This is
not surprising given the proximity to a region where the
vortex wall is unstable [5]. Instead, we extracted the re-
laxation time �1 directly from the numerics (see below) by
fitting Y�t� to Eq. (10). We obtained �1 in the range from
8.5 to 9 ns for fields from 4 to 60 Oe with Y1 scaling
linearly with H. In calculating the critical velocity Vc �
kw=�2G�, we replaced w with an effective strip width
weff � w� 2R, where R is a short-range cutoff due to
the finite size of a vortex core [11]. From vortex trajectories
observed numerically (top panel of Fig. 3) we estimate
R 
 10 nm.

To compare our theory with experimental results, we
have computed the low- and high-field mobilities using
standard material parameters for permalloy for a strip of
w � 600 nm and t � 20 nm employed in the experiment
of Beach et al. [20]. While the resulting low-field mobil-
ity �th

LF � 29 m s�1 Oe�1 agrees reasonably well with the
experimental result �exp

LF � 25 m s�1 Oe�1, our estimate
of the high-field mobility �th

HF � 0:61 m s�1 Oe�1 is
markedly lower than the observed value �exp

HF �
2:5 m s�1 Oe�1.

To understand the discrepancy between theory and ex-
periment at high fields, we compared the theoretical curve
Vd�H� against numerically simulated motion of a vortex
domain wall in a permalloy strip with width w � 200 nm
and thickness t � 20 nm. Numerical simulations were
performed using the package OOMMF [21]. We used the
same material parameters as mentioned above. Cell sizes
were 2 nm� 2 nm� 20 nm for most runs and 5 nm�
5 nm� 20 nm in a few others. The strip length was L �
4 �m or more. Care was taken to minimize the influence of
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FIG. 2 (color online). The drift velocity Vd of the domain wall
as a function of the applied field H for a permalloy strip of width
w � 200 nm and thickness t � 20 nm. Dashed vertical lines
mark the critical fields Hc� and Hc�. Symbols are results of
numerical simulations with in-plane mesh sizes as shown.
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a stray magnetic field created by magnetic charges at the
ends of the strip.

The drift velocity Vd computed within the two-mode
approximation agrees reasonably well with simulation re-
sults both below and above the breakdown field Hc� �
9:5 Oe up to a field of H2 
 35 Oe (Fig. 2). However,
above H2 the numerically observed drift velocity begins to
increase in disagreement with the theory. The failure of the
two-mode approximation around H2 was traced to the
softening of another mode seen as fast oscillations of the
width of the domain wall (the width was measured as the
difference in x coordinates of the half-antivortices, top
panel in Fig. 3). The new mode is excited at the beginning
of each cycle and relaxes to an equilibrium on the time
scale �2 
 2:5 ns. In a field of H � 24 Oe this mode
decays well before the end of the cycle (T � 7:4 ns; see
the bottom panel of Fig. 2). It is responsible for a small
fraction, O��2=T�, of the net energy loss and thus can be
neglected. AtH � 48 Oe (T � 3:7 ns) the new mode stays
active all the time and therefore cannot be ignored. In
accordance with this, the numerical data begin to deviate
from our two-mode model (11) around H2 � 35 Oe. The
new mode is related to the incipient emission of an anti-
vortex by one of the edge defects. A similar mechanism
may be at work in wider strips used by Beach et al. [20].

The framework presented here is sufficiently simple and
flexible to include additional modes and the effects of spin
torque. It can also handle other scenarios observed in
numerical simulations wherein the absorbed vortex is re-
emitted with the opposite chirality [17] or not reemitted at
all [2] or the vortex core flips while the vortex is still in the
bulk [2,17,22]. Antivortex walls [14,23] can be handled in
a similar way, provided one develops a similarly detailed
model to compute the energy and damping coefficients.
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FIG. 3 (color online). Top: The transverse vortex coordinate
Y�t� for several values of the applied fieldH. Deviations from the
expected behavior (10) in weak fields are due to stray field from
the strip ends. Bottom: The width of the wall ��t�. Curves for
different fields are shifted vertically by 150 nm for clarity. The
initial width in all cases was ��0� � 190 nm.
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