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Induced Quantum Dots and Wires: Electron Storage and Delivery
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We show that quantum dots and quantum wires are formed underneath metal electrodes deposited on a
planar semiconductor heterostructure containing a quantum well. The confinement is due to the self-
focusing mechanism of an electron wave packet interacting with the charge induced on the metal surface.
Induced quantum wires guide the transfer of electrons along metal paths and induced quantum dots store
the electrons in specific locations of the nanostructure. Induced dots and wires can be useful for devices
operating on the electron spin. An application for a spin readout device is proposed.
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Planar nanodevices containing single [1-6], double [7—
10], and multiple [11,12] laterally coupled quantum dots
with the confinement potential tuned by electrodes depos-
ited on top of the semiconductor heterostructure are at
present extensively studied in both theory and experiment
in the context of their application to quantum gates using
electron spins as quantum bits. Recent advances include
the demonstration that the electron spin can be set and read
out [2,4-9,13] as well as rotated [6,13]. In a quantum gate
working on the electron spins [14] the single qubit opera-
tions are to be performed with an electron transfer to a high
g factor region or to a ferromagnetic quantum dot where
the electron spin is rotated by microwave radiation. In this
Letter we present an idea for the control of the electron
localization and its transfer between specific locations
within the nanodevice. The idea is based on the self-
focusing mechanism of an electron wave packet near a
conductor surface [15—17] which as we show below allows
us to exclude scattering during the electron transfer and
warrants the electron delivery to a specific location in the
device with a 100% probability. An application of the
present idea for a spin-charge converter is demonstrated.

In conventional planar nanodevices [1,2] a negative
potential is applied to the gate electrodes to deplete the
two-dimensional electron gas underneath. In the variant of
the structure proposed below the role of the electrodes is
different: a single quantum-well-confined electron be-
comes self-trapped below the conductor by the potential
of the charge that it induces on the metal surface. The
response potential of the electron gas of the conductor
contains a component of lateral confinement which local-
izes the quantum-well-confined electron in the form of a
wave packet that moves parallel to the metal preserving its
shape as an electron soliton [15,16]. The packet was called
[17] an inducton since the focusing potential stems from
the charge induced in the electron gas. The inducton pos-
sesses mixed quantum and classical properties. It is de-
scribed by a wave function of both spatial and spin
coordinates whose time evolution is described by the
Schrodinger equation. On the other hand, the inducton
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moves as a stable wave packet of a finite size and its
transition probability in transport through potential barriers
is binary (0 or 1) [16], like for a classical particle.

In Ref. [16] we discussed a structure of planar infinite
layers of metal, insulator (or semiconducting blocking
barrier), and a quantum well in which the inducton was
formed. Because of the translational symmetry the induc-
ton can be formed at any place under an infinite metal plate
and travel in any direction within the quantum well. In this
Letter we show that a metal electrode of a finite size is also
able to trap an electron underneath it. For the size of the
electrode comparable to the inducton radius the transverse
motion of the packet is frozen and the induced charge
creates a confinement potential similar to the quantum
dot potential. A rectangular metal electrode of length
larger than the size of the self-focused wave packet leaves
the inducton a single degree of freedom for motion along
the metal path which therefore forms an induced quantum
wire within the quantum well.

The induced potential calculated within the quantum
linear response theory is well approximated by the re-
sponse of an ideal (classical) conductor [16,17]. There-
fore, the induced potential can be quite accurately eval-
uated by the classical electrodynamics. Let us consider a
nanodevice presented in Fig. 1. For an infinite metal plate
the induced potential can be evaluated with the image
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FIG. 1. Cross section of a nanodevice generating an induced
quantum dot or wire. Dotted line shows the boundaries of the
computational box.
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charge method [16], which greatly simplifies the calcula-
tions but is no longer applicable for metal plates of finite
size, for which the induced potential has to be calculated
from the Poisson equation. For that reason we apply the
theory used previously in modeling of electrostatic quan-
tum dots [18] which describes experiments with a remark-
able accuracy. The presence of the metal (see Fig. 1)
introduces fixed potential value in the boundary conditions
at the conducting surface. All the nanodevice is contained
in a rectangular computational box (see the dotted line in
Fig. 1). At the surface of the box we require the normal
component of the electric field to vanish. The size of the
box is taken large enough that for an infinite metal plate we
reproduce the image charge potential. We solve the
Poisson equation

1
V2O(r) = —E—eop(r), )

where the charge density is expressed by the electron wave
function #(r) and the electron charge —e: p(r) =
—e|i(r)|>. According to the superposition principle the
calculated total potential ® is a sum of contributions
stemming from two sources ®(r) = ¢ (r) + ¢@,(r), where
¢, is directly due to the wave packet charge density

distribution
—e
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and the second component is due to the charge induced on
the electrode which creates the lateral confinement for the
electron localized in the quantum well. Given the total
potential @ and the potential of the electron packet ¢,
the induced potential ¢, is calculated according to

$1(r) = O(r) — ¢y (r). 3

For the nanostructure of Fig. 1 the motion of the electron in
the growth direction is frozen by the strong vertical con-
finement which can be eliminated from the Schrodinger
equation thus taking a two dimensional form
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where z; is the center of the quantum well. In the eigen-
equation Hy = Ei, E is the single-electron energy [16].
The total energy is obtained [16] by subtracting half of the
interaction energy of the inducton with the induced poten-
tial:

B —E+ ] f dxdylp(e P do(x v, 2. (5)

The ¢, potential and the wave function ¢ are mutually
dependent so the problem is solved in a self-consistent
iteration.

Let us assume that the metal electrode deposited on top
of the semiconductor (see Fig. 1) is of a square shape with

side length b. We solve Egs. (1)—(5) and evaluate the
average diameter of the electron wave packet

D=2 [[avdyiw =P + &~ 3PP ©)

where (xg, yo) are the coordinates of the center of the metal
square. GaAs electron effective mass m = 0.067m, and
dielectric constant € = 12.5 are adopted.

The single-electron energy, the total energy and the
packet diameter are plotted as function of b in Fig. 2(a).
Both the energies are negative (for any b) and decrease
with growing b reaching the free inducton (electron wave
packet under an infinite metal plate) limit [16]. The limit is
obtained for b larger than the free inducton radius. The
packet diameter is a non monotonic function of b. For
small plate the packet is large. The packet localization is
the strongest for »3% = 70 nm and for b > b3 the di-
ameter grows to the free inducton limit. Soon after the
minimal diameter is reached the energies saturate as func-
tion of b. Note that the minimal diameter is nearly equal to
bfnoi; (for the charge density and the size of the plate see
Fig. 2(b)]. The % value is optimal for the proposed
applications of electron storage and transfer.

Similar calculation was performed for the electrode in
form of a metal bar that is infinite in the x direction and of
width b in the y direction (it will be referred to as a current
path). Figure 2(c) shows both the energies and the size of
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FIG. 2 (color online). (a) Total energy E', single-electron
energy E, and diameter of the wave packet D for a quantum
dot induced by square metal plate of side length b. Dash-dotted
curve shows the eigenvalue E for a heavy hole inducton (m =
0.45myg). (b) Electron density in the quantum dot induced by
square metal plate with » = 70 nm. (c) E', E and packet length
along x and y direction (D,, D,) for a quantum wire induced by
an infinite metal bar of width b. (d) Charge density of the wave
packet confined under the metal bar of width » = 50 nm.
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the packet in both directions of the quantum wire

Dx=2fdwﬂx—nmwxwﬁ )

D, =2 f dxdyly — yoll(x, I @®

Quite remarkably, values of D, and D, are close, although
only Dy has a minimum as a function of b. The strongest
focusing appears for the current path of width p¥ie =
50 nm, adopted as optimal in the following. The charge
distribution for b = bgﬁf plotted in Fig. 2(d) shows that the
packet is more strongly localized in the direction perpen-
dicular to the path.

In the calculations discussed above the stationary eigen-
problem of Hamiltonian (4) was solved by the evolution in
the imaginary time [19] which leads to formation of the
ground state wave function. A slight modification of the
approach allows the investigation of the evolution in the
real time. For that purpose the time dependent Schrodinger
equation is solved:

dy(r, 1) = %H(r, D, 1)dt. ©)

The dependence of the Hamiltonian on time appears for a
moving inducton due to the time dependence of the elec-
tron density which enters Egs. (1) and (2) p(r, 1) =
—e|i(r, 1)|*>. The time dependence of the potential is de-
termined by Egs. (1)—(3) solved for each time step (9).
Let us consider a nanodevice whose cross section agrees
with the schematic of Fig. 1 and the top view is displayed
in Fig. 3(b). On the surface of the structure we have three
electrodes separated by gaps of 20 nm. Quantum dots are
formed below square electrodes e¢; and e3 both of size
70 nm X 70 nm. The middle electrode e, (50 nm X
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FIG. 3 (color online). (a) Electron charge density as function
of the x-variable and time calculated at the symmetry axis (y =
yo = 100 nm) of the electrode configuration presented with blue
lines in (b). The contour plots in (b) display the charge density at
subsequent moments in time.

500 nm) is supposed to induce a quantum wire which
should guide an electron from under e; to es.

We assume that the electron is confined below e; for a
time long enough to relax to the ground state. In the
simulation it is achieved by the imaginary time evolution
for potentials of the electrodes (the Schottky barrier ne-
glected): Vi = 0.0 mV, V, = V; = =0.1 mV (V;, V,, V;
are the potentials applied to e, e;, e; electrodes, respec-
tively). After the inducton relaxes to the ground state we
change the applied voltages putting V; = —0.1 mV, V, =
0.0 mV, V3 = —0.1 mV and we start the evolution in the
real time. The inversed V| — V, potential difference gently
sets the electron in motion. The electron gains the kinetic
energy passing from below e; to e,. Next it goes along e,
with a constant kinetic energy eventually reaching the
quantum dot induced under e;. At that moment V, voltage
is switched to V, = —0.15 mV to confine the electron
permanently under e;. The traveling electron density is
presented in Fig. 3(b) for several moments in time. In
Fig. 3(a) |¥(x, yo, t)|? is plotted for y, = 100 nm set at
the symmetry axis of the proposed setup. We can see that
the inducton is accelerated between e¢; and e, (see the
curved shape of the density plot in Fig. 3(a) between x =
100 and 200 nm). Then it moves with a constant velocity
under e, [note increased localization of the packet when
under e,]. Finally, the packet gets under e; and is trapped
there when V, is switched to negative. The oscillations
observed in Fig. 3(a) for t > 50 ps are due to the residual
kinetic energy which is not lost when the inducton is
trapped under e3. The crucial point of the presented results
is that the electron was transferred from one dot to the other
with a 100% probability which is due to the self-focusing
mechanism.

Let us consider a similar structures but with varied shape
of the electrodes (blue lines in Fig. 4). The middle elec-
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FIG. 4 (color online). Snapshots of the time evolution of the
electron density following the path which is not straight like in
Fig. 3(b) but broken twice. The arrows indicate the cut corners of
the metal path. The electron leaves the quantum dot induced
under the e, electrode and goes to the quantum dot under e5.
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FIG. 5 (color online). Snapshots of the time simulations for the
Mn,Ga;_,As quantum well with position dependent Mn con-
centration. In the shaded region (left upper corner) x = 0.0013
and outside of it x = 0. The magnetic field polarizing the Mn
spins is perpendicular to the interface of pure GaAs. The gray
region denoted by e, is a square electrode forming an induced
quantum dot. Induced wires are formed below e, electrode (the
other gray region). Thick black and blue lines show the trajectory
of the wave packet of spin down (s = — %) and up (s = + %),

respectively, (s is the spin component parallel to the magnetic
field).

trode turns under right angles to force the inducton to
change direction of its velocity vector. Several snapshots
of the electron density evolution are shown in Fig. 4 with
contours. It turns out that the electron can be guided under
any place in the structure also along curved paths. Note the
cut corner edges of the current path marked in Fig. 4 with
arrows which allows the electron to change the motion
direction with equal incident and reflection angles. For
an uncut edge (turning at a 90° angle) the electron is
reflected back to e;.

The presented effect of the guided electron-transfer can
be used in systems operating on the spins of electrons.
Figure 5 presents result of simulation in which the compo-
sition of the quantum well is modified. Namely, the in-
duced quantum wire enters under a 45° angle a para-
magnetic semiconductor region formed by Mn,Ga,_ As
(x = 0.0013). The Mn spins are ordered by the magnetic
field of 2 T which is applied within the quantum well plane
(see Fig. 1) perpendicular to the interface of pure GaAs and
MnGaAs. The electron of a spin parallel (antiparallel) to
the field perceives the MnGaAs region as a quantum well
(barrier) 0.058 meV deep (high) [20]. The gray regions in
Fig. 5 show the electrodes. Under a small electrode e; a
quantum dot is formed in which an electron is initially
trapped. Next a potential of V = —0.05 mV is applied to
e, with respect to the electrode e,. An inducton with spin

down is totally reflected from the MnGaAs/GaAs interface
and goes to the right, while the electron with spin up is only
slightly accelerated at the interface and continues going
nearly parallel to the y axis.

The system presented in Fig. 5 can be used as a spin-
charge converter for the spin-readout-devices. It can also
be used for spin accumulation [21].

To conclude, we presented a design for a planar semi-
conductor structure with a quantum well and electrodes
separated by a tunnel barrier in which induced quantum
dots and quantum wires are formed. The dots store the
electrons in specific points of the nanostructure and the
paths assist in the transport of the electrons between chosen
locations in the device. The electron is kept in the stable
wave packet (inducton state) by the self-focusing mecha-
nism, which also assists in the transport leading to a 100%
probability of passing through potential cavities or barriers.
The combination of semiclassical transport properties of
the inducton with its spin degree of freedom is likely to
become useful for the spin operating devices.
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