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We develop a method of an asymptotically exact treatment of threshold singularities in dynamic
response functions of gapless integrable models. The method utilizes the integrability to recast the original
problem in terms of the low-energy properties of a certain deformed Hamiltonian. The deformed
Hamiltonian is local; hence, it can be analyzed using the conventional field theory methods. We apply
the technique to spinless fermions on a lattice with nearest-neighbors repulsion, and evaluate the exponent
characterizing the threshold singularity in the dynamic structure factor.
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One-dimensional (1D) interacting systems [1–3] occupy
a special place in quantum physics. Although interactions
have a much stronger effect in 1D than in higher dimen-
sions, it is often possible to evaluate observable quantities
exactly. Besides forming the basis of our understanding of
strong correlations, 1D models have long served as a test
bed for various approximate methods.

Many properties of interacting 1D systems can be under-
stood by considering integrable models [2]. The paradig-
matic example is N spinless fermions on a lattice with L
sites with periodic boundary conditions,

 H �
XL
m�1

�� ym m�1 �  
y
m�1 m � 2�nmnm�1�: (1)

Here nm �  ym m and � is the repulsion strength [4]. The
experimentally relevant [5] response function for the
model (1) is the dynamic structure factor

 S�q;!� �
2�
L

X
f

jhfjnyq j0ij2��!� �f � �0� (2)

in the thermodynamic limit L! 1 taken at a constant
filling factor � � N=L � 1=2. In Eq. (2), nyq �

P
k 
y
k  k�q

with  k � L�1=2P
me
�imk m, jfi is an eigenstate of Eq. (1)

with energy �f, and j0i is the ground state with �0 being the
ground state energy.

In any 1D system, conservation laws restrict the support
of correlation functions in the �!; q� plane. For example,
S�q;!�> 0 only at !>!0�q�; see Fig. 1. On general
grounds, S�q;!� is expected to exhibit a power-law singu-
larity at the threshold [6],

 S�q;!� / �!�!0�q��
��: (3)

Although exact eigenstates of integrable models can be
constructed using the Bethe ansatz [2], evaluation of dy-
namic correlation functions is very difficult. Considerable
progress was achieved in understanding gapful models [7].
However, it is still largely an open problem in the gapless
case, and, with few exceptions (see, e.g., [8–11]), the
threshold exponents � are not known. For the model (1),

the most complete results so far were obtained by combin-
ing numerics with the algebraic Bethe ansatz [12,13]. The
main limitation of this technique is very slow convergence
towards the thermodynamic limit, which makes it very
difficult to evaluate the exponent.

In the alternative Luttinger liquid approach [1,3,14], a
1D system is described by two parameters, the sound
velocity v � �d!0=dq�q!0 and the Luttinger parameter �
characterizing the interaction strength. At q! 2kF,
Luttinger liquid theory yields Eq. (3) with the exponent

 �L � 1� �: (4)

At q! 0, however, one finds S / ��!� vq�. The dis-
crepancy with Eq. (3) is due to the omission in the fixed-
point Luttinger liquid Hamiltonian [3,14] of the irrelevant
in the renormalization group (RG) sense operators [13,14]
representing the spectrum nonlinearity. Indeed, for small q,
most of the spectral weight of S�q;!� is confined to a
narrow interval of ! of the width �!	!1 �!0 about
! � !1, while Eq. (3) is applicable at !�!0 
 �! [6].
For a linear spectrum �! � 0, which makes the regime of
Eq. (3) inaccessible. For the same reason, the Luttinger
liquid result (4) is valid, strictly speaking, only at !�
!0 � �!, and the exact exponent may differ from �L.

In fact, the true threshold exponents often deviate from
the Luttinger liquid theory predictions already in the low-
est order in the interaction strength [15]; for S�q;!� near
q � 2kF, such deviations show up at q > 2kF.

q0
0

1

FIG. 1. Support of the structure factor in the �!; q� plane. For
q � 0, 2kF, the boundary of the support !0�q� lies below the
straight dashed lines !1�q� � minfvq; vjq� 2kFjg; here kF �
�� is the Fermi momentum.
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In this Letter we develop a technique that allows exact
evaluation of the exponents characterizing threshold sin-
gularities. The technique is applicable to any correlation
function that exhibits a threshold behavior and to any
gapless model integrable by the Bethe ansatz. We illustrate
the idea of the method by working out the dynamic struc-
ture factor (2) for the model (1) as an example.

Among various states jfi for which hfjnyq j0i � 0 [see
Eq. (2)] for a given q, one state, say, jfqi, has the lowest
energy �q � �0 �!0�q�. Consider now a deformed
Hamiltonian ~H with the following properties: (i) The de-
formed Hamiltonian ~H is local. (ii) ~H commutes withH, so
that H and ~H have the same set of eigenstates jfi. (iii) The
states j0i and jfqi represent the doubly degenerate ground
state of ~H. (iv) The deformation H ! ~H is continuous in
the sense that if the state jfi has momentum q and its
energy �f is close to �q, then the corresponding eigenval-
ues of ~H satisfy ~�f � ~�q � �f � �q �O���f � �q�2�;
similarly, ~�f � ~�0 � �f � �0 �O���f � �0�

2� for states
jfi with zero momentum.

Once the Hamiltonian ~H satisfying these conditions has
been constructed, it can be analyzed using conventional
field-theoretical methods [3]. In particular, condition (i)
allows one to identify the low-energy projections of micro-
scopic fields with local operators in the effective contin-
uum description. The coupling constants of this effective
low-energy theory can be found by comparing its low-
energy spectrum with that of ~H. (Essentially the same ideas
are behind the Luttinger liquid description of the low-
energy excitations of spin chains [3].) Finally, con-
ditions (ii)–(iv) guarantee that the structure factor calcu-
lated for the Hamiltonian ~H will have a power-law singu-
larity at !! 0 with the same exponent � that
characterizes the threshold behavior in the original model.

Integrable models have an infinite number of indepen-
dent local operators In commuting with H (integrals of
motion). Thus, any Hamiltonian of the form

 

~H �
X
cnIn (5)

will satisfy conditions (i) and (ii).
For free fermions jfqi� 

y
kF
 kF�qj0i [see Fig. 2(a)], and

the integrals of motion have a simple form. Condi-
tions (ii)–(iv) will be fulfilled if the single-particle spec-
trum of the deformed Hamiltonian has the shape sketched
in Fig. 2(b). While this is not sufficient to determine the
coefficients cn uniquely, the low-energy spectrum of ~H is
completely specified.

In the Bethe ansatz, excitations of integrable models
such as Eq. (1) are classified in terms of fermionlike
quasiparticles and quasiholes [2]. Similar to free fermions,
the state jfqi corresponds to a quasiparticle with momen-
tum kF and a quasihole with momentum kF � q added to
the ground state; cf. Fig. 2(a).

Provided that the quasiparticle spectrum of the deformed
Hamiltonian (see below) is similar to that shown in

Fig. 2(b), it is obvious that the infrared fixed point of ~H
corresponds to a single hole minimally coupled to the
right- and left-moving fermions with linear spectrum. We
introduce bosonic fields ’�, which satisfy
�’��x�; ’�0 �y�� � i����;�0sgn�x� y�, and the field d,
which describes an infinitely heavy hole [16]. The fixed-
point Hamiltonian then assumes the form familiar from the
x-ray edge singularity problem [17],

 

~H �
Z dx

4�

X
�

v���@x’��2 � 2���@x’��d�x�dy�x��: (6)

The low-energy projection of the microscopic field  m is
given by  m �

P
�e

i�kFx ��x� � ei�kF�q�xd�x�, where
m � x is treated as a continuous variable and the fields
 � are related to ’� according to

  � / exp�i��’� cosh# � ’�� sinh#��; e�2# � �:

(7)

The leading contribution to the density operator nyq [see
Eq. (2)] is then given by

 nyq /
Z
dx y��x�d�x�: (8)

Evaluation of the structure factor (2) using Eqs. (6)–(8)
yields a power-law singularity with the exponent

 � � 1�
�
cosh# �

��
2�

�
2
�

�
sinh# �

��
2�

�
2
: (9)

We now sketch the construction of the deformed
Hamiltonian (5) and the derivation of the coupling con-
stants of the corresponding fixed-point Hamiltonian (6).
We choose I0 �

P
m 
y
m m, so that c0 in Eq. (5) plays the

role of the chemical potential. For n > 0, the integrals of
motion are expressed via the derivatives of the transfer
matrix (trace of the monodromy matrix) 	�
� with respect
to the spectral parameter 
 [2],

 In>0 � i�dn ln	=d
n�
!i�=2�i�: (10)

The first operator in this hierarchy is proportional to the

(a) (b)

k k

∋ ∋k k

FIG. 2. (a) For free fermions �� � 0� and for � < 1=2 and q <
2kF, the state jfqi consists of a single particle-hole pair added to
the Fermi sea: the particle is created at the Fermi momentum
k � kF, and the hole at k � kF � q. (b) Single-particle spectrum
of the deformed Hamiltonian ~H: only states in a narrow strip of
energies (shaded) about the Fermi level (dashed line) contribute
to the structure factor near the threshold.
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Hamiltonian itself: I1 � H= sin�2��. The next one, I2, is
given in a closed form in [18].

Consider a quasiparticle (quasihole) excitation of the
Hamiltonian (1) characterized by the rapidity � [19]. By
construction, such excitation is an eigenstate of the de-
formed Hamiltonian ~H; see Eq. (5). Using properties of the
transfer matrix [2], one can show [20] that the correspond-
ing eigenvalue ~���� satisfies the equation
 

~�����
1

2�

Z �F

��F
d�K�����~�����c0�

X
n>0

cn��1�n
dnp0

d�n
:

(11)

Here the Fermi rapidity �F is the solution to k��F� � kF
[19], K��� � d
=d�, where 
��� is the bare two-particle
phase shift, and p0��� is the bare particle momentum; for
the model (1) these are given by [2]
 


 � i ln
�

sinh��� 2i��
sinh���� 2i��

�
;

p0 � i ln
�

cosh��� i��
cosh��� i��

�
:

(12)

In order to satisfy the conditions (ii)–(iv) above, we
impose additional constraints on ~����,

 

~���q� � ~����F� � 0; �d~�=d���q � 0;

�d~�=d����F � �d�=d����F �
���F�
���q�

�d�=d���q ;
(13)

where �q is the solution to k��q� � kF � q [19]. The
constraints are equivalent to five linear equations on the
coefficients cn in Eqs. (5) and (11). In order to satisfy these
equations, it is sufficient to keep the first five integrals of
motion in Eq. (5).

The coupling constants of the effective fixed-point
Hamiltonian (6) follow from the comparison of the finite-
size spectrum of (6) with the exact low-energy spectrum of
the deformed Hamiltonian ~H. This procedure is standard
[2] and yields [20]

 �� � �2�F���Fj�q�; (14)

where F is the dressed phase shift that satisfies [2]

 F��j�� �
1

2�

Z �F

��F
d�K�����F��j�� �

1

2�

��� ��:

(15)

Equations (14) and (15) uniquely define the parameters
��, and, therefore, the exponent (9).

Note that�� do not depend explicitly on the coefficients
cn. Indeed, the constraints (13) do not completely fix ~H but
only specify its low-energy spectrum. We emphasize that
our construction does not rely on the model-specific
Eq. (12) but is applicable to any model integrable by the
algebraic Bethe ansatz.

We now use Eqs. (9), (14), and (15) to evaluate the
threshold exponent for the model (1). Precisely at half-

filling �F ! 1 [2] and Eq. (15) is solved by Fourier trans-
form with the result

 F��1j�� � ���� 1�=2; (16)

where we used the well-known [2] value of the Luttinger
parameter at half-filling, � � �=4� [4]. Equations (9),
(14), and (16) then yield a momentum-independent expo-
nent

 �0 �
1� �

2

�
��

1

�
�

2����
�
p

�
; � � 1=2: (17)

Comparison with Eq. (4) shows that the exact exponent �0

is smaller than the Luttinger liquid result �L (note that �
varies between 1=2 and 1). For a weak interaction, �L �
�0 
 �2

L=2 
 2��=��2.
Away from half-filling, Eq. (15) can be solved numeri-

cally. The resulting exponent is q dependent; see Fig. 3. It
varies from ��0� � 0 to ��2kF� � �2 with �0 <�2 <
�L; the exact value of �2 depends on both � and � [20].
Very close to half-filling, the dependence ��q� is non-
monotonic: outside narrow intervals of the width

 �k	 1=2� �
 kF (18)

near q � 0 and q � 2kF, the exponent approaches a con-
stant, ��q� 
 �1 � const. Surprisingly,�1 coincides with
the Luttinger liquid exponent �L rather than with the exact
half-filling result �0.

This discrepancy originates in the peculiar behavior of
the phase shifts near the Fermi points. Consider Eq. (15) at
j� � �Fj � �� with �� � 1� 2�=� (this limit corre-
sponds to q away from q � 0, 2kF). In order to find the
phase shift F��j�� for �F � �� (i.e., close to half-filling)
and � 
 �F (i.e., close to the right Fermi point), we replace

��� �� in the right-hand side of (15) by 
�1�, and extend
the integration in the left-hand side to �1. The resulting
equation

 F��j�� �
1

2�

Z �F

�1
d�K�����F��j�� �

1

2�

�1�;

(19)

as well as the similar equation for � 
 ��F, describes the

FIG. 3. Threshold exponent ��q� for � � 0:9 and for � � 0:4,
0.45, 0.49, 0.495, 0.499 (bottom to top). The dashed horizontal
lines correspond to �L and �0 at half-filling.
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fractional charge function [2]. Its solution yields

 2�F��j�� �
�
�0; �; �F � �� ��
�1; �F � �
 ��

(20)

with �0 � ���� 1� and �1 � ���� 1���1=2. In other
words, the limits �! ��F and �F ! 1 for the phase
shift F��j�� do not commute. If the limit �! ��F is
taken first, and the resulting phase shifts are substituted
into Eq. (14), one finds �� � �1. Equation (9) then yields
�1 � �L. However, by taking first the limit �F ! 1 (i.e.,
�! 1=2), one would find �� � �0 and �1 � �0.

The noncommutativity of limits has observable conse-
quences. Indeed, F��j�� characterizes the strength of the
interaction between a quasihole at rapidity � and a quasi-
particle at rapidity �. According to Eq. (20), the phase shift
at � 
 ��F changes with � on the scale ��
 �F. In the
momentum space, this corresponds to narrow intervals of
the width �k � 2����F���	 �1=2� �� near k � �kF
[here we used the well-known [2] result for ���� near
half-filling]. States within or outside these intervals interact
with the quasihole with coupling constants �� 
 �1 or
�� 
 �0, respectively.

As the filling factor approaches 1=2, the interval �k
collapses. For a finite-size system close to half-filling, �k
will eventually become compatible with the momentum
quantum 	1=L. In this limit, the threshold behavior is
dominated by states outside the interval �k. Accordingly,
the exponent�1 that characterizes the threshold singularity
away from q � 0, 2kF exhibits a crossover from �1 � �L
at 1� �k� 1=L to �1 � �0 at �k
 1=L.

In the recent study [21] the exponent � at half-filling
was found to be equal to �L. Our consideration shows that
� indeed approaches this value when �! 1=2. However,
because the limits �! 1=2 and !! !0 do not commute,
the region of applicability of the result � � �L is limited
to !�!0 
 v�k. Precisely at half-filling �k � 0, and
the exponent is given by Eq. (17) instead.

It should be mentioned that the two-spinon contribution
to the structure factor has a square-root singularity at !!
!0 [22]. This result was obtained by approaching � � 1
from the gapful side of the transition �> 1. We found
�0 < 1=2 in the gapless regime �< 1; see Eq. (17) above.
The discrepancy suggests that the threshold exponent
�0��� has a discontinuity at � � 1.

Finally, for �k > 0 and when q approaches either 0 or
2kF, the situation is complicated by the competition be-
tween two small energy scales, v�k and �! (see above).
The behavior of the structure factor in this regime will be
discussed in details elsewhere [20]. At small q, it agrees
with the first-order result of [6]: ��q� 	 ��=�k�q for 0<
�k
 1 and �0 
 �L 	 � for �k � 0; the two exponents
merge at q	 �k.

To conclude, we proposed a method of evaluating the
exponents characterizing threshold singularities in the dy-
namic response functions of gapless integrable models.

Application of the method to the dynamic structure factor
of 1D spinless fermions on a lattice revealed unexpected
complexity in the dependence of the threshold exponent on
the system parameters near half-filling.
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