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We show that strong response to nonresonant modulations and excess noise are state dependent in
generic nonlinear systems; i.e., they affect some output states but are absent from others. This is
demonstrated in complex Swift-Hohenberg models relevant to optics, where it is caused by the non-
normality of the linearized stability operators around selected output states, even though the cavity modes
are orthogonal. In particular, we find the effective parameters that control excess noise and the response to
modulations and show cases where these phenomena are enhanced by an order of magnitude.
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Excess noise [1] is a term used in optics when the level
of spontaneous emission noise in a device is more than the
one photon per mode expected from basic quantum con-
siderations. This phenomenon was first predicted by
Petermann in [2], and its paradoxical result was explained
in [3]: there is one spontaneously emitted photon per mode
when the modes are orthogonal, but there may be more
when the modes are not orthogonal. The classical (deter-
ministic) counterpart of this phenomenon is that the total
energy of the field is the sum of the energies of the
individual modes only if these are orthogonal. Otherwise,
one must also include the mode-mode correlation terms.
Usually, the “modes’ considered in this context are the
modes of the optical cavity, either open [4] or unstable [5]
or with misaligned elements [6]. However, the modes in
question are far more general: they are the modes of the
dynamics of the system [7]. In this respect, excess noise is
just one aspect of the enhanced response to modulation and
transient growth typical of non-normal operators, i.e., op-
erators that do not commute with their adjoint [8,9]. The
main feature of non-normal operators is that their eigen-
vectors are not orthogonal. This has dramatic consequen-
ces in terms of the dynamics of the system: perturbations of
stable states can be substantially amplified before they
eventually decay (transient growth) [8]; the response to
an external modulation can be very large even far from
resonance (pseudoresonance) [10]. We show here that in
nonlinear systems, the operator responsible for these ef-
fects is the linear stability operator and this is state, not just
model, dependent. This is particularly important when
studying systems that are both time- and space-dependent
and have a rich bifurcation structure. Enhanced response to
external modulations critically affects, for example, the
implementation of chaos synchronization in secure laser
communications [11].

In this Letter, we analyze three aspects of generic non-
linear systems. First of all, primary bifurcation of a given
state may be normal, while its secondary bifurcations, in
general, are not. Second, the effects of non-normality on
the nonlinear dynamics and response can vary from state to
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state and need to be quantified. Third, the system response
depends on the spatial and temporal frequency of the
modulation. This opens the possibility of fine tuning the
output of the system by carefully choosing the modulation
wave number(s) and frequency(ies). We illustrate these
aspects here using a Swift-Hohenberg model of lasers
[12-14]. By fitting the model parameters to experimental
curves, the model can be used to provide qualitatively
accurate predictions of the dynamics of a wide variety of
lasers near the lasing threshold. Our analysis aims to
determine the parameters that have the largest effects on
non-normality and, consequently, on modulational re-
sponse. Swift-Hohenberg equations are a paradigm of
weakly nonlinear analysis. Therefore, state dependent ex-
cess noise and enhanced modulation response discussed
here are not limited to lasers or optics, but apply to any
nonlinear system near transitions from stationary states to
traveling waves.

The dynamical consequences of non-normality can be
understood in terms of simple systems of linear differential
equations [10,15]. For example, the solution u(r) =
exp(tA)u(0) of # = Au, with A a non-normal matrix with
eigenvalues that have strictly negative real-part, can show
transient growth: in other words, || exp(zA)u(0) || may not
be a monotonic decreasing function of time, even though
NR(A) <0 for all the eigenvalues A of A. From here on,
| u ||= i@ - u is the norm induced by the scalar product and
the overbar ~ symbol indicates complex conjugate. As a
second example, we note that the amplitude of the asymp-
totic solution of & = Au + vexp(iwgyt) is not determined
by the distance between w( and the eigenvalues (spectrum)
of A, but is proportional to the norm of the resolvent of A
evaluated at the point in the complex plane 7z = iw,
Il R(A, iw) ||=]| iw —A)~!||. For any operator, the
norm we use here is defined as the largest singular value
of the operator. If A is non-normal, this norm may be large,
even though the frequency may not be near any of the
natural frequencies of the system (pseudoresonance) [10].
These results can be extended to systems of partial differ-
ential equations and have had numerous applications in
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mathematics and physics [16] from hydrodynamics [10]
and geophysics [8,9] to lasers [4,7].

To illustrate the state dependence of non-normality, we
consider a generic system of nonlinear partial differential
equations

ou

T Loulx, t) + Nu(x, 1)], (D
with /N a nonlinear operator such that N (0) = 0. The
linear stability operator of a time-independent solution
uy(x) of Eq. ()is £, = L, + 6N, with 6N, being
the linearization of N" around u, and 6 N, = 0 for u, =
0. The presence of the term 6 N, means that the normal-
ity of L does not imply that of £, for uy(x) # 0.
Physically, this means that effects such as transient growth
and enhanced response to external forcing can be present
near states with u, # 0 even if they are absent near u, = 0.

We consider now the Swift-Hohenberg model of wide
aperture lasers with plane mirrors [13,14]

0,0 =1+ o) [olp —in) + iaV?
o

— m(n +aV2)? — (1 + ia)nlf, (2)

an=(—b+cVin + |Jl? 3)

with n the population inversion and ¢ the field appropri-
ately rescaled. Note that the cavity modes are transverse
traveling waves that are mutually orthogonal. The strength
of pumping is represented by the parameter p, while 7 is a
scaled atom-cavity detuning. The parameters a, b, ¢, and o
are all related to geometrical or material properties of the
laser, b is the ratio of the decay times of population
inversion and of polarization. The parameter « is the
line-enhancement factor: it is proportional to the ratio of
the derivatives of the refractive index and of the gain with
respect to the population and is different from zero if the
gain line is asymmetric. The « factor is positive in bulk
semiconductor lasers and quantum well lasers; it can be
negative in quantum dot lasers [17,18] and in Raman lasers
[19]. Here, we consider for illustration purposes the values
a=0.01, b=0.8, c =0, and o = 0.1 that are used in
[12]. The results are valid for generic parameter values
such as, for example, b > 1 and c¢ negligible where a
single complex Swift-Hohenberg equation used in the
description of pattern formation in a wide variety of sci-
entific disciplines [20] is recovered.

Equations (2) have a trivial solution (¢, n) = (0, 0). As
the pump parameter p is increased, this solution loses its
stability to a time- and space-varying solution,

l[/ — Aei(kox*wot), n = n, (4)

with ky, g, and n, functions of the laser parameters and
A=blp—(n—akd)?/(1 + 0)*] [14,19]. The linear
stability operator of the trivial solution is normal for all

values of a. We focus here on the instability of the lasing
solution (4) which, instead, is non-normal. The first step in
this analysis consists of changing to a moving reference
frame by introducing a new field ¢ = exp—i(kox —
wot). The stability of ¢ is determined by a nonautonomous
system, that of s by an autonomous system to which we
can apply the theory summarized earlier.

The linearization of (2) in the traveling reference frame
of ¢ gives rise to a system of linear coupled partial differ-
ential equations, ¥ = Lvin v = (¢, ¢, v), where ¢ and v
are the modulations of ¢ and n respectively. These equa-
tions are block diagonal in Fourier space: each block is a
set of three coupled linear equations v, = L, v,, with v, =
(¢ b_1» dy) the k-th Fourier components of ¢ and

Jo /(1 + o)v. Ly is given by

L, 0 —(1+ia)l,
Ly Lj L,
with
jak .
L. =— 4 g (*AnaK. + a*K2),

- l—i-a'_(l—i-a')3

Ly =+o/(1+ o)A,
L4 = _b - Ckz.

Here, An = (1 — ak3) and K. = 2kok * k2.

The equations for v and their block-diagonal represen-
tation (5) for v, are of the general form described above. It
is straightforward to verify that the matrices L, and, hence,
the operator L, are non-normal when L; # 0. Since L;
affects all off-diagonal terms of Eq. (5) and depends line-
arly on the amplitude A of the lasing state, the effect of
non-normality on the dynamics increases with A (i.e., with
b) and with «a. Therefore, phenomena such as transient
growth, excess noise and enhanced response to forcing,
which are due to non-normality of L, can appear when the
field amplitude of the laser state is non null, even though all
cavity modes are orthogonal.

As a first illustration of these phenomena, we consider
the linear response of the lasing solution to external mod-
ulations. This is given by

v

7 = L, v(x, 1) + f(x)e” (6)
where f(x) exp(zt), with z € C, is a time dependent forc-
ing term. Equation (7) in Fourier space provides the re-
sponse for each Fourier component v, via the block-
diagonal representation of L given in (5)

v, (1) = e"'v(0) + R(z, k) fre®, (7

where R(z, k) is the resolvent of L;, v,(0) and f, are the
k-th component of the initial perturbation and of the modu-
lation, respectively. Physically, the latter correspond to
injection of field and carrier density with spatial wave
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number k into the laser. Solutions in real space can be
found by summing over all £’s. When the lasing solution is
stable, the exponential term vanishes after a transient, and
the maximal response is given by the norm of the resolvent.
In particular, for a periodic forcing with z = iw;, vy € R,
the maximum response amplitude is given by || v,(7) ||=
Il RGieo, k) I £

This has two important consequences. First, for a normal
operator L, the optimal response is given by the distance
of the forcing frequency w to the closest eigenvalues of L.
This is very different when L, is non-normal: quantita-
tively, the maximal response could be much larger than the
maximal response of a normal system; qualitatively non-
normality can drastically change the frequency ranges
corresponding to signal amplification or damping. An ex-
ample of this behavior is shown in Fig. 1, where using the
singular value decomposition of the resolvent [8], we show
that the maximal response (thick solid line) is an order of
magnitude larger that the maximal response for a normal
systems with the same resonances as the one considered
(thick dashed line).

However, the maximal response is, in general, generated
by vectors with components corresponding to different
physical quantities, such as the field amplitude and popu-
lation inversion in the laser case. In practice, one may be
more interested in finding the response to monochromatic
forcing of either the field or the population inversion,
which are more common in experiments. The resolvent
provides also the response to these type of forcing. We
have added a field forcing term proportional to exp[i(k ;x +
wt)] to (2). We have measured the amplitude of the
modulation of the (stable) traveling wave solution either

Frequency

FIG. 1 (color online). Response of (2) and (3) to a monochro-
matic modulation exp[i(k;x + w1)] of the field i as a function
of w; at k; = 4. The lines are: maximum response of the linear
system based on the norm of the resolvent (thick solid line) or on
the distance from the eigenvalues (thick dashed line). The other
lines represent the expected response of ¢, (solid line), ¢_;
(dashed line) and of v, (dot-dashed line). The crosses, pluses,
and circles are the response measured from direct integration of
(2) and (3) with added forcing term. Parameter values: & = 0.2,
p =15 n=-0.09, ks = 4.

by direct integration of Egs. (2) and (3) with added forcing
term, or using Eq. (8). In the particular case of the traveling
wave solution (4), the temporal and spatial frequency of the
wave and of the modulation are mixed in the laboratory
frame. Therefore, the response of the system is determined
not just by R(iwy, k¢), but also by R[*iw, + wg, *(k; —
ko)].

Figure 1 shows also the amplitude of the components of
v, as a function of the forcing frequency w, in the case of
single-wavelength forcing at k; = 4 of the field. The am-
plitude of the modulation of ¢, is larger than what would
have been expected by the distance of w, from the eigen-
values of L,. Figure 2, instead, shows the response to a
monochromatic modulation on the population inversion. In
this case, a term proportional to cos(k;x + w ) was added
to (3). In this example, the field modulation is more effec-
tive than that of the population inversion: as can be seen in
Fig. 1, the modulation of the electric field at frequencies
wy <0 gives rise to a response that is close to the maxi-
mum. In this case, the component ¢, of the field is domi-
nant and much larger than all the other. Similar behavior
can be observed for a < 0.

We now consider another aspect of non-normality,
namely, the transient response to a small initial perturba-
tion of a stable lasing state in the absence of external
forcing. Transient growth can occur if all the eigenvalues
A of Ly have 9(A;) <0, and at least one eigenvalue of
L, + L}: is positive. We recall that the lasing solution
becomes unstable and undergoes filamentation when at
least one A; such that ®(A;) > 0. From this simple condi-
tion, we can easily find a physically very significant dif-
ference between positive and negative «. The eigenvalues
of L; + L}: are invariant under change of sign of «, and
therefore, the value of the pump parameter p where the
largest eigenvalue of L; + L,I becomes positive is the same
for = a. The situation is different for the eigenvalues A; of
L. The threshold value of p for which there exists one
eigenvalue A, with 91(A;) > 0 is smaller for « positive than

0
Frequency

FIG. 2 (color online). Response off (2) and (3) to a modulation
cos(ksx + w 1) of the population inversion 7 as a function of w
at k; = 4. The lines are as in Fig. 1. Parameter values: a = 0.2,
p =15 n=-0.09, ks = 4.
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FIG. 3 (color online). Example of transient growth: plot of
| exp(Li?) || for k = 4. Parameter values: « = 2, n = 0.09, p =
0.6. The insert shows the pseudospectrum of L, for =20 = k =
20. The contour lines correspond to e = 1000717273} from
outside inward.

for « negative. This is consistent with the experimental
observation that the filamentation threshold is higher in
quantum dots than in bulk semiconductor lasers [18]. As a
consequence, the range of control parameters where non-
normal effects can be observed is larger for & < 0 than for
a > 0.

A quantitative estimate of transient growth is given by
(8) with f(x) = 0: for each wave number k of the pertur-
bation, the maximum possible transient growth of the k-th
Fourier component vy is the norm || e’“+ || . In order to
estimate the maximum transient growth, it is very useful to
introduce the e-pseudospectrum of L;. This is defined as
[15]1 A(L) ={z € C:|| R(z, L) l[= € '}. For € = 0, this
is just the standard spectrum; for €>0, the
e-pseudospectra of L, are a family of strictly nested closed
sets, which grow to fill the whole complex plane as € — 0.
The lower bound on maximal transient growth [10],

sup N(2) Il (z — L)~ 1= sup || e ||, (®)
NR(z)>0 =0

can be interpreted geometrically in terms of the pseudo-
spectrum: maximal transient growth occurs for wave num-
bers where the pseudospectrum extends as far as possible
in the M(z) > 0 half-plane for a given €. This is illustrated
in Fig. 3: the solution (4) is stable, but the pseudospectrum
extends sufficiently in the $i(z) > 0 half-plane for transient
growth to take place. Note that this phenomenon is differ-
ent from convective instabilities because the state consid-
ered here is stable and the group velocity of the
perturbation may be null [21].

In conclusion, we have examined the effects of non-
normality in the context of a Swift-Hohenberg equation, a
general model for spatio-temporal nonlinear processes. In
general, the linear stability operator of the solutions of this
equation is non-normal. Therefore, we can expect that the
main effects of non-normality, namely, state dependent
enhanced modulation response, excess noise and transient

growth, can be seen in a variety of dynamical systems
across many scientific disciplines. In the case used here
as an example, a laser with asymmetric gain, the effects of
non-normality are present even though the cavity modes
are orthogonal. Moreover, the theory presented here pro-
vides tools to analyze and quantify the effects of non-
normality: the resolvent allows us to determine the effec-
tiveness of enhanced modulation and transient growth,
while the pseudospectrum provides a geometrical interpre-
tation of these phenomena. For example, in lasers with
asymmetric gain, they show that non-normal effects are
more evident in lasers with negative « factor. Finally, this
theory can be extended to determine the response to mod-
ulations of states with a complex time dependence [9]. This
may be applied in synchronization experiments for secure
optical communications [11], where modulations of solid-
state lasers have been used to achieve controllable chaotic
dynamics.
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