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A Lagrangian generalization of time-reversible Born-Oppenheimer molecular dynamics Niklasson
et al. [Phys. Rev. Lett. 97, 123001 (2006)] is proposed. The formulation enables the application of higher-
order symplectic or geometric integration schemes that are stable and energy conserving even under
incomplete self-consistency convergence. It is demonstrated how the accuracy is improved by over an
order of magnitude compared to previous formulations at the same level of computational cost. The
proposed Lagrangian includes extended electronic degrees of freedom as auxiliary dynamical variables in
addition to the nuclear coordinates and momenta. While the nuclear degrees of freedom propagate on the
Born-Oppenheimer potential energy surface, the extended auxiliary electronic degrees of freedom evolve
as a harmonic oscillator centered around the adiabatic propagation of the self-consistent ground state.
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Born-Oppenheimer molecular dynamics [1–6] based on
self-consistent field (SCF) methods, such as Hartree-Fock
or density functional theory [7–9], is currently a gold
standard in molecular dynamics simulations. It is derived
from the well defined adiabatic approximation for the
separation of the nuclear and electronic degrees of free-
dom, where the forces acting on the atoms are calculated at
the self-consistent electronic ground state [10]. However,
the ability to achieve physically accurate and stable micro-
canonical simulations, while keeping the computational
cost low, has been limited by the requirement of a high
degree of SCF convergence in the nuclear force calcula-
tions [11,12]. Only very recently, by restoring the time-
reversal symmetry in the underlying adiabatic propagation
of the electronic degrees of freedom [13–15], has it been
possible to achieve efficient energy conserving simulations
also under incomplete SCF convergence. Unfortunately,
these techniques are not able to take advantage of powerful
symplectic or geometric integration methods developed for
celestial and classical molecular dynamics [16–21].
Symplectic integration, which in general requires a
Hamiltonian or Lagrangian formulation of the dynamics,
enables highly efficient simulations while keeping a rig-
orous control over physical properties.

The purpose of this Letter is to take advantage of geo-
metric integration methods in Born-Oppenheimer molecu-
lar dynamics by introducing a Lagrangian generalization of
the recently proposed time-reversible Born-Oppenheimer
molecular dynamics [14]. This gives time-reversible Born-
Oppenheimer molecular dynamics a theoretically more
solid and physically transparent framework and, most sig-
nificantly, thanks to the Lagrangian formulation, higher-
order symplectic integration algorithms can be applied,
which provide excellent performance in molecular dynam-
ics simulations. It will be demonstrated how the accuracy is

increased by over an order of magnitude at the same level
of computational cost compared to previous formulations.

The conventional Born-Oppenheimer (BO) Lagrangian
for ab initio molecular dynamics is given by

 L BO�R; _R� �
1

2

X
k

Mk
_R2
k �USCF�R;D�; (1)

where the potential USCF is the total electronic energy in,
for example, Hartree-Fock or density functional theory,
including the nuclear-nuclear repulsion terms. The poten-
tial energy USCF�R;D� is defined at the electronic ground
state given by the SCF optimized solution D of the elec-
tronic degrees of freedom. D is assumed to be the sym-
metric single-particle density matrix in an orthogonal
basis-set representation, though generalizations to other
representations, such as the density, the wave functions,
or the Kohn-Sham Hamiltonian, are straightforward.
Notice that D is not an independent dynamical variable,
since it is determined by the external potential at atomic
configuration R � fRkg. It is included to show that the
Lagrangian LBO is calculated at the self-consistent Born-
Oppenheimer ground state. The nuclear degrees of free-
dom are given by the atomic coordinates Rk and velocities
_Rk, with the corresponding masses Mk. The dots denote

time derivatives.
The key result of this Letter is the extension of the Born-

Oppenheimer Lagrangian LBO in Eq. (1) by the addition of
auxiliary electronic degrees of freedom P and _P that evolve
in a harmonic potential centered around the self-consistent
solution D. The extended auxiliary dynamical variables, P
and _P, are assumed to be of the same form as D, i.e., a
density matrix and its time derivative. The extended Born-
Oppenheimer (XBO) Lagrangian is given by
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2
Tr��D�P�2�:

(2)

Here� and! are fictitious mass and frequency parameters
for the auxiliary electronic degrees of freedom. There are
no additional terms imposing constraints on the electronic
degrees of freedom, i.e., wave function orthogonality or
density matrix idempotency [22–24]. These constraints
are not necessary, since the potential energy USCF�R;D�
and the nuclear forces are calculated at the normalized and
idempotent ground state D.

The time evolution of the dynamical system described
by the extended Lagrangian LXBO is determined by Euler-
Lagrange equations of motion

 Mk
�Rk��

@USCF�R;D�
@Rk

��!2Tr��D�P�@D=@Rk�; (3)

 � �P � �!2�D� P�: (4)

In the limit �! 0, i.e., when LXBO ! LBO, the dynamics
is determined by the coupled equations of motion,

 Mk
�Rk � �

@USCF�R;D�
@Rk

; (5)

 

�P � !2�D� P�: (6)

These two equations of motion reveal two properties that
are of fundamental importance. (a) The nuclear forces are
calculated at the self-consistent ground state D as with the
Born-Oppenheimer Lagrangian. The molecular trajectories
therefore evolve on the Born-Oppenheimer potential en-
ergy surface with the total Born-Oppenheimer energy,
EBO � 1

2

P
kMk

_R2
k �USCF�R;D�, as a constant of motion.

(b) The equations of motion do not include the fictitious
electron mass parameter �, which otherwise could cause
problems [25].

Since the extended electronic degrees of freedom P�t�
evolve in a harmonic potential centered around their own
self-consistent solutions D�t� in Eq. (2), the auxiliary
density matrix P�t� and its self-consistent solution D�t�
will stay close together. We can therefore use P�t� as an
efficient initial guess to D�t� in the iterative SCF optimi-
zation,

 D�t� � SCF�R�t�; P�t��: (7)

This strongly reduces the computational cost to reach the
self-consistent ground state D�t� at which the nuclear
forces are calculated in Eq. (5).

In conventional Born-Oppenheimer molecular dynamics
the initial guess for the iterative SCF optimization is not
given by an auxiliary dynamical variable, as in Eq. (7), but
by an extrapolation from previous time steps [5,11,12,26–

28]. Unfortunately, because the SCF procedure is irrevers-
ible and in practice never complete, this extrapolation
breaks the time-reversal symmetry in the underlying
propagation of the electronic degrees of freedom, which
causes serious stability problems with a systematic drift in
the total energy [11,12]. Only by increasing the SCF con-
vergence, at great computational cost, can the energy drift
be reduced, though it never fully disappears. The funda-
mental problem with the broken time-reversal symmetry in
the electron propagation was recently solved by the intro-
duction of time-reversible Born-Oppenheimer molecular
dynamics based on a lossless dual filter integration scheme
[14]. With the extended Lagrangian formulation the time-
reversal problem is avoided in a similar way: the auxiliary
electronic degrees of freedom P�t�, and thus the initial SCF
guesses in Eq. (7), occur, not through extrapolation, but as
dynamical variables that can be integrated by time-
reversible algorithms [16,29,30]. The nuclear forces are
then calculated with an underlying electron propagation
that is time reversible. In this way a systematic energy drift
is avoided even under incomplete SCF convergence.

It is easy to see that the extended Lagrangian formu-
lation is a generalization of time-reversible Born-
Oppenheimer molecular dynamics. If we apply the time-
reversible Verlet scheme [29] to the integration of the
electronic degrees of freedom in Eq. (6) we get

 P�t��t��2P�t��P�t��t���t2!2�D�t��P�t��: (8)

If we choose the dimensionless factor � � �t2!2 � 2 this
propagation is identical to the linear integration scheme in
time-reversible Born-Oppenheimer molecular dynamics
[14]. Thus, the extended Born-Oppenheimer Lagrangian
in Eq. (2) forms a natural framework for time-reversible
Born-Oppenheimer molecular dynamics, which thereby is
given a more rigorous and physically transparent formula-
tion. Instead of propagation through a time-reversible dual
filter process, the auxiliary electronic degrees of freedom
P�t� occur as dynamical variables that evolve through a
time-reversible integration scheme.

Possibly the most important advantage of the extended
Born-Oppenheimer molecular dynamics is that it enables
the application of higher-order symplectic or geometric
integration methods [16–21]. Whereas a conventional in-
tegration algorithm can be seen as a numerical approxima-
tion for the integration of an underlying exact Hamiltonian
dynamics, a symplectic integration can be seen as an exact
integration for an underlying approximate Hamiltonian.
The conservation of various physical properties of the
approximate Hamiltonian can then be rigorously con-
trolled [17,20,31]. For the nuclear coordinates in Eq. (5)
a quite general symplectic integration [20,31] over a time
length �t is divided in m steps (i � 1; 2; . . . ; m)
 

_Rk�ti� � _Rk�ti�1� � bi�t �Rk�ti�1�;

Rk�ti� � Rk�ti�1� � ai�t _Rk�ti�:
(9)
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Here �Rk�t0�; _Rk�t0�� � �Rk�t�; _Rk�t�� and �Rk�t�
�t�; _Rk�t� �t�� � �Rk�tm�; _Rk�tm��. For the electronic de-
grees of freedom in Eq. (6), for i � 1; 2; . . . ; m, and using
the variable substitution �t _P�t� ! _P�t�, the symplectic
integration is
 

_P�ti� � _P�ti�1� � bi��D�ti�1� � P�ti�1��;

P�ti� � P�ti�1� � ai _P�ti�;
(10)

where D�ti� � SCF�R�ti�; P�ti��. Here � � �t2!2,
�P�t0�; _P�t0�� � �P�t�; _P�t�� and �P�t� �t�; _P�t� �t�� �
�P�tm�; _P�tm��. Examples of coefficients ai and bi for vari-
ous number of steps m can be found in Ref. [31].

Before applying a symplectic integration algorithm the
value of the dimensionless constant � � �t2!2 must be
chosen. Since the SCF convergence is always incomplete
the self-consistent solutions D�ti� will be calculated only
approximately. The idea is to choose � such that the
integration in Eq. (10) is always stable under approximate
SCF convergence. The optimal choice is the largest
�-value that is consistent with stability, since this choice
gives the largest value of !2 for a given time step �t. A
larger !2 corresponds to a higher curvature of the har-
monic potential in Eq. (2), which keeps the auxiliary
dynamical variables closer to the self-consistent ground
state. This reduces the error and/or the cost for the SCF
optimization. Based on a linearization of the SCF optimi-
zation procedure in Eq. (7) around its exact ground state
D�, we can express an approximately SCF optimized den-
sity matrix as

 D 	 D� � ��P�D��: (11)

Here � corresponds to the SCF response kernel, which is
given as a ‘‘super matrix’’ acting on the matrix (P�D�).
Assuming at least some amount of convergence in the SCF
procedure the eigenvalue of � with the largest magnitude,
�, will be somewhere in the interval � 2 ��1; 1�.
Following the analysis by Arias et al. [26], we insert the
linearized SCF expression in Eq. (11), with � replaced by
�, in the symplectic integration, Eq. (10), and look at the
homogeneous part of the equation,

 

_P�t�
P�t�

� �
� TmTm�1 . . . T1

_P�t� �t�
P�t� �t�

� �
: (12)

Here Ti (i � 1; 2; . . . ; m) are the matrices

 T i �
1 bi���� 1�
ai aibi���� 1� � 1

� �
: (13)

Equation (12) corresponds to a mapping of the phase
space from one time step to the next for a linearized test
system with the constant solution D��t� 
 0. The opti-
mal choice of � is the largest value for which the map-
ping TnTn�1 . . . T1 has all its eigenvalues on the unit
circle for all degrees of incomplete SCF convergence,
i.e., for � 2 ��1; 1�. This case avoids exponentially in-
creasing solutions leading to numerical instabilities or

unphysical dissipation. The mapping in Eq. (12) always
preserves the phase space, i.e., the ‘‘area’’ spanned by _P�t�
and P�t�, since the determinant of the mapping
det�TmTm�1 . . . T1� � �m

i�1 det�Ti� � 1 for all values of
� and �.

For the optimal 4th order integration scheme by
McLachlan and Atela [31] (where a1 	 0:515 352 837,
a2 	 �0:085 782 019 4, a3 	 0:441 583 024, a4 	
0:128 846 158, b1 	 0:134 496 199, b2 	
�0:224 819 803, b3 	 0:756 320 001, and b4 	
0:334 003 603) the largest possible �-value consistent
with stability under incomplete SCF convergence is � �
4:617. For the conventional leap-frog or velocity-Verlet
scheme [31], as well as the time-reversible Verlet integra-
tion in Eq. (8), the largest possible value is � � 2.

The great advantage with stability under incomplete
SCF convergence is that any amount of convergence suf-
fices for stability, which typically means that only one SCF
cycle per force calculation is necessary. This is in contrast
to possibly all previous higher-order extrapolation schemes
(beyond linear order), for example, the Fock-Matrix dy-
namics schemes by Pulay and Fogarasi [11] and the higher-
order time-reversible schemes by Niklasson et al. [14],
which are unstable under incomplete SCF convergence,
i.e., for the full interval of � 2 ��1; 1�. Simulations based
on those methods will thus diverge if not a certain finite
degree of SCF convergence can be guaranteed. To take full
advantage of the higher-order symplectic integration
schemes the accuracy in the electronic force calculations
in Eqs. (6) and (10) should preferably match the accuracy
in the integration of the nuclear degrees of freedom. This
generally motivates an improved SCF convergence, though
it is not a requirement for stability.

Figure 1 shows the fluctuations in the total Born-
Oppenheimer energy EBO for a C2F4 molecule using
Hartree-Fock theory with a standard Gaussian basis set
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FIG. 1 (color). The fluctuations in total Born-Oppenheimer
energy [EBO�t� � E0] using three different ab initio molecular
dynamics approaches described in the text. The integration time
length dt is adjusted to allow for a direct comparison between
the methods at the same level of computational cost.
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for three schemes: (i) conventional linear interpolation of
the electronic degrees of freedom from two previous time
steps, (ii) time-reversible Born-Oppenheimer molecular
dynamics, Eq. (8) [14] and (iii) the proposed symplectic
integration scheme, Eqs. (9) and (10), with the optimal 4th
order coefficients by McLachlan and Atela [31], with � �
4:617. In scheme (i) and (ii) the nuclear coordinates are
integrated by the velocity-Verlet algorithm [30]. Three
SCF fixed point iterations without mixing were used in
each force calculation. This example clearly illustrates
three levels of performance. The linear interpolation
scheme has a rapid decay, whereas no systematic energy
drift is seen for the time-reversible and the symplectic
integration schemes. Most importantly, the higher-order
symplectic approach improves the numerical accuracy, as
measured by the amplitude of the energy fluctuations, by
over an order of magnitude (�1=40) compared to the
previous time-reversible scheme, at the same level of com-
putational cost. Similar improvements are found in Table I.

In summary, a Lagrangian formulation of time-
reversible Born-Oppenheimer molecular dynamics was
proposed, where extended auxiliary electronic degrees of
freedom evolve as a harmonic oscillator centered around
the adiabatic propagation of the self-consistent electronic
ground state. The Lagrangian formulation enables the ap-
plication of highly efficient and accurate symplectic or
geometric integration methods that are shown to be stable
under incomplete SCF convergence. For example, using a
4th-order symplectic integration scheme it was demon-
strated how the accuracy is improved by over an order of
magnitude compared to previous formulations. With a
Lagrangian formulation it is also possible to extend micro-
canonical simulations to other ensembles, for example, to
Nosé-Hoover thermostats or Langevin dynamics. The ex-
tended Born-Oppenheimer molecular dynamics presented
here, which is an example based on a density matrix
representation, may thus open the door to alternative and
even more versatile formulations of molecular dynamics.
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TABLE I. Estimated total energy fluctuation amplitudes for
the linear time-reversible (A) [14] and the optimized 4th order
symplectic (B) integration in Eqs. (9) and (10) [31]. (3 SCF/force
calculation).

System A (�t � 0:5 fs) B (�t � 2:0 fs)

�H2O�10 (RHF/3-21G) 50 �hartree 2 �hartree
C2F4 (RHF/3-21G) 80 �hartree 2 �hartree

F2 (RHF/6-31G) 20 �hartree 0:07 �hartree
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