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I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe
of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial
parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel
parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show
that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and
separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-
Chern-Simons-Gödel black hole backgrounds.
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Introduction.—A realistic black hole must localize in-
side the cosmological background, and a natural considera-
tion for it is our Universe (with a possible global rotation).
A popular phenomenological theory to describe the Uni-
verse is given by the standard Friedmann-Robertson-
Walker (FRW) metric, which represents a rather idealized
model of an isotropic homogeneous world filled with
perfect fluid. But the standard FRW model is too ideal to
describe the global rotation of the Universe, since the
rotation is a universal phenomenon: all compact objects
in the Universe rotate.

An exact solution for the rotating Universe in four
dimensions was found by Gödel [1]. The Gödel universe
is an exact solution of Einstein’s equation in the presence
of a cosmological constant and homogeneous pressureless
matter. This space-time solution exhibits several peculiar
features including, in particular, the presence of closed
timelike curves (CTCs) through every point.

Recently, the solutions representing the generalization
of the Gödel universe to D � 5 dimensions, especially in
the context of five-dimensional minimal supergravity, have
attracted a lot of attention [2–13]. A maximally super-
symmetric Gödel-type universe [2] exhibiting most of the
peculiar features of the four-dimensional cousin was
shown to be an exact solution of minimal supergravity in
D � 5 dimensions. These solutions are related by T duality
to pp waves, when uplifted to 10 dimensions [12]. The
Gödel-type universes are important due to the possibility of
quantizing strings in these backgrounds and their relation
to the corresponding limits of super-Yang Mills theories.
On the gravitational side, the pp waves (U) dual to the
Gödel universes arise as the Penrose limits of near-horizon
geometries. Quite recently, an exact solution for a sta-
tionary Kerr black hole immersed in the rotating Gödel
universe has been obtained by Gimon and Hashimoto [4]
within the five-dimensional minimal supergravity, and its
various properties have been investigated recently in [7–
11]. A procedure was proposed [13,14] to embed the super-

symmetric black ring solutions into the Gödel universe, but
no explicit solution was presented.

On the other hand, it is very difficult to find an exact
rotating charged solution in higher dimensions. Recently,
there has been renewed interest [15–22] in finding rotating
charged solutions of five-dimensional gravity and super-
gravity. The Breckenridge-Myers-Peet-Vafa (BMPV)
black hole [15,16] is the only asymptotically flat, half
supersymmetric, rotating charged black hole with a regu-
lar, finite size horizon and finite entropy. Its existence is
made possible due to the particular Chern-Simons coupling
of minimal D � 5 supergravity and the fact that a self-
duality condition is allowed to impose on the exterior
derivative of the rotation one-form in D � 5 dimensions.
Later on, further generalizations have been made in [17–
22] to include a nonzero cosmological constant.

As far as I am aware, until recently, an exact solution for
a rotating charged black hole localized inside the Gödel
universe was not known. A charged extremal black hole
with finite horizon area in a Gödel universe was identified
in [2,3], where both the pure Gödel-type universe and the
BMPV black hole had also been discussed, but they were
presented in two separate solutions, not in a single form.
The Kerr-Newman-Gödel black hole [5] and its three-
charges generalization [6] are not exact solutions of D �
5 minimal supergravity, but in the extremal limit they
indeed yield a remarkable superimposition of the BMPV
black hole and the pure Gödel-type universe in one solu-
tion, namely, the so-called BMPV-Gödel black hole.
Therefore, it is an important outstanding problem to find
space-times describing a nonextremal rotating charged
black hole immersed in the Gödel universe.

In this Letter, I construct an exact solution describing the
nonextremal rotating charged black hole localized inside
the Gödel universe and describe its various basic proper-
ties. A remarkable feature of the solution is that in the
m � q case it superimposes the pure Gödel-type universe
and the BMPV black hole in one solution, similar to that
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in [5]. My solution, however, is a faith, charged general-
ization of the Kerr-Gödel black holes found by Gimon and
Hashimoto in [4]. I shall refer to my solution as the
Einstein-Maxwell-Chern-Simons-Gödel (EMCS-Gödel)
black hole, in order to distinguish it from the one derived
in [5]. Just like [4], I also do not require my solutions to
preserve any supersymmetry [2]. Another important prop-
erty is that these EMCS-Gödel black holes still obey the
first law (integral and differential Bekenstein-Smarr for-
mulas) of black hole thermodynamics provided the Gödel
parameter j is viewed as a thermodynamical variable. In
addition, the Hamilton-Jacobi and Klein-Gordon equations
are separable in these backgrounds and the space-time
admits a reducible Killing tensor.

Metric ansatz.—The bosonic part of the minimal super-
gravity theory in D � 5 dimensions consists of the metric
and a one-form gauge field, which are governed by the
EMCS equations of motion

 R�� �
1
2g��R � 2

�
F��F�

� � 1
4g��F��F

��
�
; (1)

 D�

�
F�� �

����
3
p �������

�g
p ������A�F��

�
� 0; (2)

where ������ is the Levi-Civita tensor density and � � 1
is the Chern-Simons coupling constant.

To seek an exact solution of the supergravity equations
of motion, it is of particular importance to start from a good
ansatz for the metric and the gauge potential. A suitable
ansatz to my aim assumes the following form:

 ds2 � �f�r�dt2 � 2g�r��3dt� h�r��2
3 �

dr2

V�r�
�
r2

4
d�2

3;

(3)

 A � B�r�dt� C�r��3; (4)

where the unit 3-sphere d�2
3 and the left invariant form �3

are specified by

 d�2
3 � d	2 � sin2	d 2 � �2

3; �3 � d
� cos	d :

(5)

To arrive at the above ansatz for charged generalization
of the Kerr-Gödel black hole, I have compared two
already-known solutions (an uncharged metric and a
charged solution) for the rotating black holes in minimal
D � 5 supergravity. The first uncharged solution [4] rep-
resents the D � 5 Kerr black holes embedded in the rotat-
ing Gödel universe; its explicit form is given by Eq. (7)
below by setting the charge q � 0. In this metric, the
parameter j defines the scale of the Gödel background
and is responsible for the rotation of the universe. The
parameter a is related to the rotation of the black hole.
When m � a � 0, the metric reduces to that of the pure
Gödel-type universe [2]. The D � 5 Kerr black hole with
equal rotation parameters is recovered when j � 0.

The second one comes from the charged supergravity
solutions in the vacuum backgrounds. The solution for a
rotating charged Kerr black hole in five dimensions is again
given by Eq. (7) by taking j � 0. This solution is the five-
dimensional Kerr-Newman black hole with equal-
magnitude angular momenta, satisfying the EMCS equa-
tions (1) and (2). It is a correct generalization of the four-
dimensional Kerr-Newman solution to five dimensions.
When a � 0, it reduces to the D � 5 Reissner-
Nordström black hole. The m � q case reproduces the
supersymmetric BMPV black hole [15,16]. This charged
solution is also related to the previously known charged
solutions [17–22] in the case without a cosmological con-
stant. In particular, it corresponds to the solution in [18] by
taking � � � � 0 and to that in [19–21] by m � p� q
and � � 0. It can also be reduced from the general solution
in [22] (with g � 0) by setting two angular momenta equal
and by redefining the coordinates. The m � q case coin-
cides with the solution in [17] when g � 0.

Clearly, my metric ansatz keeps five of the nine isome-
tries of the Gödel universe, generated by @t, and by four
generators of the SU�2� � U�1� subgroup of the SO(4)
isometry group acting on S3 [4]. My ansatz is also inspired
from symmetry and separability of various field equations.

The solutions and basic properties.—I now try to seek an
exact charged solution representing the EMCS-Gödel
black hole. There are six unknown functions needed to
be specified. But among them, a constraint

 V�r� � 4
g�r�2 � h�r�f�r�

r2 � f�r�; (6)

will reduce the actual number to five.
Substituting the ansatz (3) and (4) into Eqs. (1) and (2)

will result in a rather complicated set of equations. I am
guided by the fact that my solution should reduce to the
Kerr-Gödel black hole [4] when the charge parameter
vanishes, and to the Kerr-Newman solution when the
Gödel parameter is equal to zero. With this in mind, I
assume that each unknown function is a polynomial of
the radial coordinate, with its coefficients to be determined.
Using the GRTENSOR II program, it is not difficult to check
that the following choice (with � � 1):
 

f�r��1�
2m

r2 �
q2

r4 ; g�r�� jr2�3jq�
�2m�q�a

2r2 �
q2a

2r4 ;

h�r���j2r2�r2�2m�6q��3jqa�
�m�q�a2

2r2 �
q2a2

4r4 ;

V�r��1�
2m

r2 �
8j�m�q��a�2j�m�2q��

r2

�
2�m�q�a2�q2�1�16ja�8j2�m�3q��

r4 ;

B�r��

���
3
p
q

2r2 ; C�r��

���
3
p

2

�
jr2�2jq�

qa

2r2

�
; (7)

indeed solves the EMCS equations (1) and (2).
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The solution presented above is the ‘‘left’’ form. Its
corresponding ‘‘right’’ solution can be generated by the
following dual transformations (� � 1):

  $ 
; q! �q; j! �j; �! ��: (8)

In the remaining analysis, I shall focus on the ‘‘left’’
solution only. The solution is, in general, nonextremal. It is
uniquely characterized by four nontrivial parameters,
namely, the mass m, the charge q, the equal Kerr rotation
parameter a, and the Gödel parameter j. When j � 0, the
metric reduces to the D � 5 Kerr-Newman solution. In the
case when q � 0, one recovers the Kerr-Gödel black hole
[4]. When the parameter a is set to zero, the solution
represents a nonextremal D � 5 Reissner-Nordström-
Gödel black hole. A supersymmetric Gödel black hole
appears when m � �q, a � �2jq, corresponding to the
charged extremal Gödel black hole previously identified in
[2,3]. The m � q case is, in particular, interesting; it is the
BMPV-Gödel black hole, a superimposition of two remark-
able solutions in minimal D � 5 supergravity, that is, the
pure Gödel-type universe and the BMPV black hole. This
charged Kerr-Gödel solution with equal rotation parame-
ters is one of the main results in this Letter. In what follows,
I shall study its various basic properties.

The space-time has a curvature singularity at r � 0,
where both the Ricci scalar and the gauge field strength

 R �
1

3
F��F

��

� 16j2

�
1�

m� 3q

r2 �
6q2

r4

�

�
2q2�1� 8ja� 8j2�m� 3q��

r6
�

4q2a2

r8 (9)

diverge there.
A salient feature of the solution (7) is that the space-time

has an event horizon at r� and an inner horizon at r�,
which are determined by V�r� � 0, namely, the locations
of black hole horizons are
 

r2
	 � m� 4j�m� q�a� 8j2�m� q��m� 2q� 	

����
�
p
;

� � �m� q� 8j2�m� q�2�

� �m� q� 2a2 � 8j�m� 2q�a� 8j2�m� 2q�2�:

(10)

The metric is well behaved at the horizons but the gauge
field becomes singular there [11]. Clearly � > 0 is the
condition for the horizon to be well defined. The horizons
will degenerate when � � 0, corresponding to the follow-
ing different possibilities for j:

 j	 � 	

��������������������
2�m� q�

p
4�m� q�

; or
�2a	

��������������������
2�m� q�

p
4�m� 2q�

: (11)

In these cases, the black hole becomes extremal. On the
other hand, a naked singularity will appear when � < 0.

Just as their uncharged counterparts, the EMCS-Gödel
solutions can have CTCs. The surface at fixed r where the
metric component g

 � h�r� � r2=4 vanishes is called
the ‘‘velocity of light surface’’ (VLS) or the CTC horizon.
The location of the CTC horizon r � rVLS is determined
by h�r� � r2=4 � 0, namely,

 

r6�1� 4j2�r2 � 2m� 6q�� � 12jqar4

� 2�m� q�a2r2 � q2a2 � 0: (12)

If r > rVLS (when g

 < 0), then @
 will be timelike,
indicating the presence of CTCs since 
 is periodic.
There will be no CTCs for r < rVLS (when g

 > 0). It
should be emphasized that since the Gödel space-time is
homogeneous, there is a CTC going through every point in
space-time, i.e., the time machine.

Thermodynamics of EMCS-Gödel black holes.—For a
regular rotating EMCS-Gödel black hole, the horizon to-
pology is a squashed 3-sphere. I now investigate its ther-
modynamical properties. The Bekenstein-Hawking
entropy of the black hole is

 S �
1

4
A �

1

2
�2r2

�

��������������������������
4h�r�� � r

2
�

q
; (13)

while the Hawking temperature T � 
=�2�� is given via
the surface gravity

 
 �
r�V 0�r��

2
��������������������������
4h�r�� � r

2
�

q �
r2
� � r

2
�

r2
�

��������������������������
4h�r�� � r

2
�

q : (14)

The latter can be obtained by a standard Wick-rotation
approach or computed via the standard formula 
2 �

� 1
2 l�;�l�;�jr�r� , where the Killing vector l � @t ��@


is normal to and becomes null at the horizon.
The angular velocity � and the electrostatic potential �

at the horizon are given by

 � � �
 � g�r��=�h�r�� � r2
�=4�; � � 0; (15)

 � � l�A�jr�r� � B�r�� � C�r���: (16)

There is a special choice of parameters if they satisfy

 �m�q�a2�4j�m�q��m�2q�a�4j2�3m�5q�q2�0;

(17)

then V�r�� � g�r�� � 0. Consequently � will vanish at
the horizon. This generalizes the nontrivial result (a �
�4jm) in the case of a Kerr-Gödel black hole [4].

It is remarkable that the conserved energy, angular mo-
menta, and charge for the charged Kerr-Gödel black hole,
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M��
�

3

4
m�j�m�q�a�2j2�m�q��4m�5q�

�
;

J�
1

2
�
�
a
�
m�

q
2
�2j�m�q�a�8j2�m2�mq�2q2�

�

�3jq2�8j2�3m�5q�q2

�
;

Q�

���
3
p

2
��q�4j�m�q�a�8j2�m�q�q�;

W�2��m�q��a�2j�m�2q��; (18)

satisfy the first law of black hole thermodynamics

 dM � TdS��dJ��dQ�Wdj; (19)

 

2
3M � TS��J� 2

3�Q�
1
3Wj: (20)

To close the expression of the integral Bekenstein-Smarr
formula, here I have considered the Gödel parameter j as a
thermodynamical variable and introduced its conjugate
generalized force W. The conserved charges for M, J,
and Q were computed at first by integrating the first law
via fixing the parameter j as a constant. Once they are
determined, then one can allow j to vary and check the first
laws to obtain the expression for W. It is also possible to
use (Wj2, 1=j) as a pair of thermodynamical variables to
change the sign of the Gödel work term Wj. Compared
with the thermodynamical role [20,23] played by the cos-
mological constant, one can argue that the Gödel parameter
behaves just like a cosmological constant in the sense of
thermodynamics.

Symmetry and separability of Hamilton-Jacobi and
Klein-Gordon equations.—From the inverse metric com-
ponents and the metric determinant, one can easily infer
that not only the Hamilton-Jacobi equation, but also the
massive scalar equation with a minimal electromagnetic
coupling term, are capable of separation of variables. This
is contrary to the statement made in [10], where the non-
separability of the Klein-Gordon equation is because the
authors had adopted a different coordinate system and
expanded the metric in the regime for small j. The sepa-
rability arises from the fact that the metric ansatz keeps the
five isometries of the Gödel universe, generated by @t and
four generators of the SU�2� � U�1� group acting on S3 [4].
The separability also implies that the metric admits a
reducible Killing tensor [20]. Details will be published
elsewhere.

Discussions.—There are many other interesting issues to
explore. The computation of the conserved energy, angular
momenta, and electric charge of the EMCS-Gödel black
holes remains a big challenge, because the naive applica-
tion of traditional approaches such as the counterterm
method fails. At present, there is only one viable work
[7] that can do such a job. It remains an open question

whether the conserved charges can be computed by other
well-known methods. One would like to map out the full
parameter spaces of the general nonextremal charged Kerr-
Gödel solution. One can lift the D � 5 EMCS-Gödel
solution to 10 dimensions as a new background for string
and M theory. Ultimately, it would also be interesting to
study the causality problem, chronology protection, and
holography [12]. I hope that the explicit solution describ-
ing the nonextremal charged Kerr black holes immersed in
the rotating Gödel-type universe will stimulate further in-
sight into these fascinating issues.
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