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We construct a class of lattices in three and higher dimensions for which the number of dimer coverings
can be determined exactly using elementary arguments. These lattices are a generalization of the two-
dimensional kagome lattice, and the method also works for graphs without translational symmetry. The
partition function for dimer coverings on these lattices can be determined also for a class of assignments of
different activities to different edges.
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The dimer model is a well-known problem in classical
lattice statistics. The Ising model can be reformulated as a
dimer model on a modified graph [1]. The dimer model is a
simple, nontrivial but analytically tractable model that
provides a starting point for the studies of systems of
nonspherical molecules with hard-core interactions [2].
The latter can show a variety of geometrical phase tran-
sitions, e.g., in liquid crystals [3]. Recently there has been a
lot of interest in quantum dimer models, to describe the
ground states of frustrated quantum antiferromagnets, and
some exotic phases expected in assemblies of hard-core
bosons on pyrochlore lattices [4].

Kasteleyn’s pioneering solution of the problem for gen-
eral two-dimensional planar lattices [5] led to a lot of
follow-up work on the two-dimensional problem [2], but
the problem in higher dimensions is much less studied. For
a nonzero fraction of sites not covered by dimers, it is
known that there is no phase transition as a function of the
density of dimers [6]. This result is similar to the Lee-Yang
circle theorem and is valid for arbitrary graphs with differ-
ent activities for different bonds. Huse et al. have given
nonrigorous arguments that the dimer-dimer orientational
correlations have a power-law decay in all dimensions on
bipartite lattices [7]. For graphs made of corner-sharing
triangles, where each vertex has a coordination number
four, the entropy of dimer coverings per site can be deter-
mined exactly in any dimension [8]. Huang et al. studied
the dimer problem in three dimensions, where the lattice is
a stack of 2D planes, but the problem is not fully three-
dimensional as the dimers were confined to lie in planes
[9]. Priezzhev calculated exactly the number of a subset of
all dimer configurations on the cubic lattice [10]. For some
anisotropic dimer models in three dimensions, the phase
transition point can be determined exactly [11], but not the
total entropy.

Elser [12] provided a simple argument to show that
entropy per site of dimer covering of the kagome lattice
[Fig. 1(a)] has a very simple form and equals 1

3 log2. This
argument was extended to arbitrary graphs made of corner-
sharing triangles by Misguich et al. [8]. This problem was
investigated again recently by Wang and Wu [13]. The

arguments of Misguich et al. are valid only for graphs in
which each vertex has coordination number 4, and belongs
to exactly two triangles. In this Letter, we present an
argument that is similar to Elser’s, but is valid for graphs
in which the coordination number of vertices is not re-
stricted to 4. Our arguments are applicable to a large class
of lattices with arbitrary dimension, and also to graphs
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FIG. 1 (color online). Some examples of lattices for which the
exact entropy is calculated in this Letter. (a) The kagome lattice.
(b) A three-dimensional lattice with corner-sharing triangles.
(c) The unit cell of the Na4Ir3O8 lattice. There are 12 iridium
atoms per unit cell (shown as red cubes or blue spheres). Sodium
and oxygen atoms are not shown. The (red) cubes mark the
articulation points of the lattice and the spheres mark the rest.
The lattices in (b) and (c) can be shown to be equivalent. (d) Unit
cell of a lattice obtained by the decoration procedure discussed
in text.
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without translational invariance. Some examples of lattices
where our method can be used are shown in Fig. 1.

For simplicity of presentation, we first describe our
arguments as applied to the kagome lattice [shown in
Fig. 1(a)] and discuss the generalizations later. We select
a suitable subset of the sites of the lattice. The condition for
the choice of sites in this subset will become clear with the
example below. We will call these the red sites, and denote
the set by R. In the figures they are marked with (red)
squares or cubes while the remaining sites are shown with
(blue) circles or spheres. For the kagome lattice, we choose
the red sites to be the sites of one of its three sublattices
[Fig. 1(a)]. For any dimer covering C of the lattice, to each
red site s of the lattice, we assign a discrete variable �s.
This variable takes only two possible values: �s is �1 if
the other vertex of the dimer covering s is above s, and�1
if it is below.

We now arbitrarily choose a value of�s for each site s in
R. Let us denote this set by f�sg, and ask how many dimer
configurations are consistent with f�sg. We note that if
�s � �1, then the two bonds connecting the site s to sites
below it would not be used in dimer coverings. Then we
can safely delete these bonds, and consider dimer covering
of the remaining graph. Similarly, if �s � �1, we remove
two bonds connecting s to sites above. If we do this for all
sites of the red sublattice, the full lattice breaks up into a set
of mutually disconnected chains of the type shown in
Fig. 2.

It is easy to see that each chain can be covered by dimers
in at most one way. For example, in Fig. 2, for the top
chain, starting from left, we see that site 1 has to be
matched with site 3, and then site 2 has to be matched
with site 4. And so on.

It is convenient to adopt the boundary conditions that a
site on the right boundary can be either covered by a dimer
or left uncovered [14]. Then there is exactly one dimer
covering consistent with any given set f�sg. The number of
red sites is N=3, and so the number of different possible

choices of f�sg is 2N=3. This is also the total number of
dimer coverings.

We define entropy per site C by the relation that number
of dimer coverings increases as exp�CN�, for a lattice with
N sites, for large N. Then for the kagome lattice,

 C � 1
3 log2: (1)

The above argument can be generalized to more general
connected graphs made of corner-sharing triangles.
Consider, for example, the lattices shown in Figs. 1(b)
and 1(c). To construct the lattice of Fig. 1(b), we start
with a simple cubic lattice with only the vertical edges
present. For each pair of neighboring vertical chains, we
add a red site in between every fourth pair of opposing
edges and join it to the ends of the edges. The opposing
edges in between which we add these additional sites are
displaced with respect to each other so that no two triangles
share an edge, as shown in Fig. 1(b).

The unit cell of a hyperkagome lattice is shown in
Fig. 1(c). There are experimental materials like the sodium
iridate (Na4Ir3O8) where this structure, known as the GGG
structure, is realized in nature [15]. To obtain this lattice,
we start from the pyrochlore lattice, which consists of
corner-sharing tetragons, their centers forming a diamond
lattice. The hyperkagome lattice in Fig. 1(c) is obtained by
removing one site from each tetragon to leave a lattice of
corner-sharing triangles. In fact, the graph of Fig. 1(c) can
be shown to be isomorphic to 1(b).

For these cases, we choose the red sites as shown in
Figs. 1(b) and 1(c), and as in the kagome case, to each red
site assign a binary variable �, specifying whether the
dimer covering that site belongs to one or the other of
the two triangles meeting at that point. Then, as before, we
ask how many different dimer coverings are consistent
with an arbitrary choice of f�sg.

If now, from each red site, we delete two edges that are
not consistent with the given choice, the lattice breaks up
into mutually disconnected chains of single edges and
triangles similar to Fig. 2. These chains have a ‘‘backbone’’
of bonds in the z direction in Fig. 1(b), and a zigzag array
of roughly vertical lines in Fig. 1(c) (shown by black
dashed lines). If we assume free boundary conditions on
one (say, the top) face, there is a unique dimer covering of
the lattice consistent with any arbitrary choice of f�sg. For
large N, the number of red sites is N=3 (up to surface
correction terms), and the number of dimer coverings is
2N=3. Hence, for both the three-dimensional lattices shown
in Figs. 1(b) and 1(c), we get

 C � 1
3 log2: (2)

For graphs in which each vertex is shared by two tri-
angles, this result was obtained earlier by Misguich et al.
[8]. But our argument is extended easily to graphs where
more than two triangles meet at a single vertex. Consider a
graph formed by the vertices and edges of a collection of
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FIG. 2 (color online). On deleting two edges from each (red)
square, the kagome lattice breaks into disconnected chains. The
values of the � variables at some of the (red) squares are
indicated by the numbers in parentheses.
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nonintersecting (possibly nonstraight) lines, which may be
imagined as embedded in a d-dimensional lattice (d � 2).
We add a number of additional vertices not lying on any
line and call these additional vertices red vertices. The red
vertices can be labeled by integers 1; 2; . . . ; Nr. For the jth
red vertex, we choose a positive integer rj � 1, choose rj
different edges from the original lines, and join both ends
of each edge to the red vertex j by additional edges. Then
the jth red vertex is the shared corner vertex of rj triangles,
and its coordination number is 2rj. We ensure that the
edges selected do not already have some vertex in com-
mon, and that no edge of the original lines is selected more
than once, so that no edge belongs to more than one
triangle. This defines the graph L for which we want to
calculate the number of possible dimer covers.

An example of such a graph is shown in Fig. 1(d). The
lattice consists of vertices of a simple cubic lattice, labeled
by coordinates �m1; m2; m3�, where m1, m2, and m3 are
integers. We start with edges only along the z direction.
The lattice graph consists of disconnected vertical one-
dimensional chains. We add extra connections to this graph
to make it three-dimensional as follows: we pick an ele-
mentary cube of the lattice, add an extra vertex at the center
of the cube, and connect it to two or more of the vertical
edges of the cube by triangles [an example is shown in
Fig. 1(d)]. We choose a unit cell of period p1, p2, p3, where
p1, p2, p3 are integers >1. [In the case shown in Fig. 1(d),
p1 � p2 � p3 � 2.] We choose some extra cubes within
the unit cell to connect this way, and then repeat this
pattern to get a translationally invariant lattice. We ensure
that these ‘‘decorations’’ are selected such that the result-
ing graph is connected, and that no edge belongs to more
than one triangle.

In the example shown in Fig. 1(d), we chose two diago-
nally opposite cubes within the unit cell, and add a site
each at the center of each cube. The site with coordinates
�1=2; 1=2; 1=2� is connected to all its four neighboring
vertical edges, but we connect the site at �3=2; 3=2; 3=2�
to only three of its neighboring vertical edges.

Then, as before, at each red vertex j, we define a variable
�j that takes rj possible values. There is a unique dimer
cover of L consistent with a particular arbitrarily chosen
set of values f�sg. It follows that the total number of dimer
covers of this graph � is given by

 � �
YNr

j�1

rj: (3)

In Fig. 1(d), we have two red vertices per unit cell,
and r1 � 4 and r2 � 3. There are 10 sites per cell. Hence
the entropy per site for the lattice shown in Fig. 1(d) is
1

10 log12.
It is easy to see that the arguments can be trivially

extended to other choices of decorations, and also to higher
dimensional lattices.

Our treatment can also be extended to the case where
different edges are associated with different activities. This
is illustrated most easily for the kagome lattice. Let us
associate activity z1 with a horizontal edge of the lattice
[Fig. 1(a)]. Let us assume that the activity for a nonhor-
izontal edge is z2 if it belongs to an up-pointing triangle,
and z3 if it belongs to a down-pointing triangle. Then, for a
particular f�sg having n values �1, the weight of the
unique dimer cover is easily seen to be zn2z

N=3�n
3 zN=6

1 .
Summing over all choices of f�g, we get total partition
function ��z1; z2; z3� � �z2 � z3�

N=3zN=6
1 . This answer dif-

fers from that obtained by Wang and Wu [13], as our choice
of edge weights differs from theirs.

It is easy to see that this same method works for the
higher dimensional graphs [e.g., for the lattice shown in
Fig. 1(d)], so long as (a) the two edges at a red vertex
belonging to the same triangle always have the same
weight, and (b) all edges not having a red end vertex
have the same weight.

For example, consider the lattice shown in Fig. 1(d).
In the unit cell shown in Fig. 1(d) there are seven tri-
angles. Let the nonvertical edges of the respective triangles
have the activities z1; z2; . . . ; z4 for the bonds in the 4
triangles meeting at �1=2; 1=2; 1=2�, z5, z6, z7 for the
bonds meeting at the site �3=2; 3=2; 3=2� and z0 be the
activity for the vertical edges. Then the free energy per
site is �1=10� log��z1 � z2 � z3 � z4��z5 � z6 � z7�z

3
0�.

Note that the fact that � variables are completely un-
correlated suggests that orientational correlations between
dimers on these lattices may be short ranged. In fact, for the
kagome lattice, the dimer-dimer orientational correlation
function has been shown to be zero for all separations �2
unit cell spacings [13]. It is easy to see that this is true also
of the lattice in Fig. 1(c) or 1(d).

We should emphasize that though the f�sg variables are
local, independent variables that uniquely specify the al-
lowed dimer configurations, the procedure of finding the
dimer configuration corresponding to a given f�sg is non-
trivial and nonlocal. If we change �s at only one red site, it
changes the orientations of dimers very far along the two
affected vertical chains.
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