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Entangled photons can be generated ‘‘on demand’’ in a novel scheme involving unitary time reordering
of the photons emitted in a radiative decay cascade. The scheme yields polarization entangled photon
pairs, even though prior to reordering the emitted photons carry significant ‘‘which path information’’ and
their polarizations are unentangled. This shows that quantum chronology can be manipulated in a way that
is lossless and deterministic (unitary). The theory can, in principle, be tested and applied to the biexciton
cascade in semiconductor quantum dots.
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Entangled quantum states are an important resource in
quantum information and communication [1]. Entangled
photons are particularly attractive for applications due to
their non interacting nature and the ease by which they can
be manipulated. There is, therefore, considerable interest
in the development of sources for reliable (nonrandom)
polarization entangled photon pairs. Currently, the most
important and practical source of polarization entangled
pairs is down conversion [2,3] which has a large random
component. Furthermore, since the entanglement is created
by a coincidence detection of the pair, the entangled state
becomes unavailable for further manipulations.

Quantum dots are a source of single photons ‘‘on de-
mand’’ [4–6]. Recently, it has been shown [7,8] that they
can be used as sources of polarization entangled photon
pairs. The entangled photon pair is obtained from the decay
cascade of a biexciton in a quantum dot. The biexciton has
two decay channels, each emitting a photon pair with a
polarization characteristic to the channel. Perfect ‘‘which
path ambiguity’’ requires that the intermediate exciton
state is doubly degenerate as illustrated in Fig. 1(a). In
this idealized setting, the first generation photons have
identical colors (energies) and the second generation pho-
tons also have identical, though in general different, colors.
With perfect ‘‘which path ambiguity’’ the state of polar-
ization of the two photons is maximally entangled, and
each pair can, in principle, be produced ‘‘on demand’’ [9].

Quantum dots do not have perfect cylindrical symmetry
and this lifts the degeneracy of the intermediate exciton
states [10]. We shall refer to this splitting as ‘‘detuning.’’
Since the detuning is large (compared with the radiative
width), the two decay paths are effectively distinguished by
the distinct colors of the emitted photons. This adversely
affects the ‘‘raw’’ entanglement which is then negligible
[7].

In principle, the detuning can be manipulated by Stark
and Zeeman effects, by stress, etc., and much experimental
effort has been devoted into reducing it to small values
(below the radiative width) [11]. This has been an elusive

goal so far for both practical and fundamental reasons. The
fundamental reason is that quantum mechanics has the
principle of level repulsion: In quantum dots the scale of
energy responsible for the detuning (exchange) dominates
the scale of the radiative width which is the smallest energy
scale in the problem [10,12]. This puts an ‘‘in principle’’
obstacle to substantial ‘‘which path ambiguity’’ in quan-
tum dots.

Entangled photons from quantum dots have been ob-
tained by selectively filtering the photons that conform to
the which path ambiguity [7]. The entanglement then
comes at the price that a substantial fraction of the photon
pairs are lost and the quantum dot does not furnish en-
tangled pairs ‘‘on demand.’’

An alternate strategy proposed in [13,14] is to tune the
dot spectrum to have coincidence of colors across gener-
ations, rather than within generations. This is illustrated in
Fig. 1(b) where the colors of the photons in the first
generation match, in pairs, the colors of the photons in
the second generation. Since a coincidence of colors in
different generations does not require degeneracy, there is
no fundamental obstacle to tuning the level diagram to a

FIG. 1 (color online). Two alternative level schemes that can
be used to generate entangled pairs. The solid (dashed-dotted)
line represents the decay channel that yields two x (y) polarized
photons. The energies correspond to the colors of the emitted
photons. (a) Represents the situation where photon colors match
in the first generation, and has the geometry of a kite (deltoid).
(b) Represents the case where colors in different generations
match, and is geometrically a parallelogram.
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precise coincidence of colors [12–14]. When this is the
case the two decay channels are identical up to time order-
ing. The different time ordering of the two decay paths of
the raw state betray the path which, as it turns out, com-
pletely kills the entanglement. In order to regain entangle-
ment one needs to manipulate the time ordering. The
theory of reordering the quantum chronology is developed
in this Letter. It allows us to derive the measure of entan-
glement of the reordered state and its dependence on the
spectral properties of the radiative cascade. Perhaps the
most important result is that it shows that the reordering
can be made in a way that conforms with the requirement
of on demand. The theory then also allows an optimization
of the entanglement and it leads to a proposal of a practical
experimental realization.

We denote by � the detuning, the (dimensionless) mea-
sure of the color matching of the photons in a given
generation. Perfect matching within generation is repre-
sented by � � 0. Similarly, we denote by � the (dimen-
sionless) spectral control which measures the matching of
the colors across generations (the biexciton binding energy
in a quantum dot). Perfect cross color matching in this case
is represented by � � 0. More precisely

 � �
Ey � Ex

2�
; � �

Eu � E0 � Ex � Ey
2�

: (1)

Ex, Ey, Eu are as in Fig. 1 and � is the half width of the
intermediate levels. As we have explained, in dots there
are fundamental reasons that force j�j � 1, while � can,
in principle, be tuned to zero. The issue is, can one gener-
ate entangled photon pairs by tuning � � 0 even when
j�j � 1? As we show, the answer is yes.

Suppose that the two photons are emitted along the z
axis and have two decay modes with equal amplitudes.
Then, the (possibly un-normalized) photon wave function
has the form [15]:

 j i �
X
j�x;y

j�ji � jjji; (2)

where j�ji describes the photons’ wave packet and jjji
their state of polarization.

For reasons that will become clear below we need to
allow for a unitary post processing of the raw state emerg-
ing from the cascade. The manipulation, Uj, is described
by a unitary operation that depends on the polarization
state (i.e., the decay channel) and is then formally of the
form

 j�ji ! Ujj�ji: (3)

In the language of quantum information this corresponds to
applying single qubit unitary gates on each of the two
polarization states (this operation can be made by whom-
ever prepares the state, but can also be made later and so
falls under the class of local operations [16]).

As a measure of the entanglement we take the absolute
value of the negative eigenvalue in the Peres test (negativ-
ity) [17,18]

 ���; �;W� �
jh�xjWj�yij

h�xj�xi � h�yj�yi
; W � U	xUy: (4)

The maximal value of � is 1
2 corresponding to maximally

entangled (Bell) states. Note that the denominator is just
the normalization of the state j i.

The j�ji are fully determined by the (complex) energies
of the level diagram, Za � Ea � i�a. In the limit that the
dipole approximation holds, the (normalized) wave pack-
ets are given by [15,19]:

 hk1; k2j�ji � A�jk1j � jk2j; Zu�
A�jk1j; Zj� � A�jk2j; Zj��;

(5)

where,

 A�k; Z� �

����
�

�

s
1

k� Z
: (6)

(We use units where @ � c � 1.) The photon of the first
generation has energy nearEu � Ej while the photon of the
second generation has energy near Ej and relative time
delay of order 1=�j. Note that positive (negative) delay is
associated with Zj in the lower (upper) half complex
energy plane.

In practice, the smallest energy scale in the problem is
the radiative width, �. We treat it as a small parameter in
the theory and thus can safely drop the absolute value in
Eq. (5). This allows for an analytic calculation of some of
the integrals that arise. In particular, when the two emitted
photons have different colors, i.e., when jjk1j � jk2jj � �,
one has

 h�jj�ji � 2 (7)

to leading order in �.
The numerator in Eq. (4), h�xjWj�yi can now be written

as a sum of the two integrals:

 y1 �
2��u
�2

Z W�k1; k2�dk1dk2

jk1 � k2 � Zuj
2�k1 � Z

	
x��k2 � Zy�

(8)

and

 y2 �
2��u
�2

Z W�k1; k2�dk1dk2

jk1 � k2 � Zuj
2�k1 � Z

	
x��k1 � Zy�

; (9)

where �x � �y � �. The first term, y1, may be thought of
as the contribution to the entanglement from the coinci-
dence of colors across generations while the second term,
y2, as the contribution to entanglement from the matching
of colors within a generation.

Consider first the raw outgoing state where W � 1. One
expects that entanglement can arise only from matching
colors within a generation. By first shifting the integration
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variables, k1 � Ex ! k1 and k2 � Ey ! k2 in Eq. (8), and
using the residue theorem to compute the integrals, one
indeed finds that the cross-generations contribution van-
ishes:

 y1��;W � 1� � 0: (10)

For the second integral, shifting kj ! kj �
Ex�Ey

2 first, and
using similar elementary manipulations, one finds

 y2��;W � 1� �
�2i

�� i
: (11)

In particular, combining with Eqs. (4) and (7), we find

 �2��; �; 1� �
1

4��2 � 1�
: (12)

The raw entanglement is independent of � (to leading
order in �) and does not benefit from matching the colors
of photons in different generations (tuning to � � 0).
Since typically j�j � 1, the raw entanglement is small.

Fortunately, a suitable choice of W can yield an en-
tangled state of polarization even when j�j � 1. Since
W is unitary, W�k1; k2� is a phase. The optimal choice of
phase is one that would make y1 as large as possible. This
can be achieved when the integrand in Eq. (8) has a fixed
phase [so that the oscillations leading to the cancellation in
Eq. (10) are eliminated], e.g.,

 Wopt � �
�k1 � Z

	
x��k2 � Zy�

jk1 � Z
	
xjjk2 � Zyj

: (13)

Wopt�Ex; k2 � Ey� is plotted in Fig. 2(a).
By inserting Eq. (13) into Eq. (8) and shifting the

integration variables, this choice for Wopt gives for y1

 y1 �
2

�2

Z g

jk1 � k2 � �� igj
2

dk1dk2

jk1 � ijjk2 � ij
; (14)

where g � �u=�. Let us study the case of � � 0, where
this function (which is even in �) achieves its maximum.
Combining this with Eq. (4) and (7), one finds for the
optimal W

 ��g; j�j � 1; � � 0;Wopt� �
1
2� f�g�; (15)

which is plotted, as a function of g for perfect color
matching, � � 0, in Fig. 2(b). The function f�g� is nega-
tive, monotonically decreasing and vanishes for g � 0,
where maximal entanglement, � � 1

2 , is achieved. For
systems such as the biexciton radiative cascades, one can-
not get maximal entanglement even when the colors per-
fectly match, since g � 1:5–2; however, one does get
substantial entanglement, � � 0:4.

The entanglement � is, of course, sensitive to the match-
ing of colors across generations, so that when �� 1 the
entanglement becomes small. This is illustrated in Fig. 2(c)
which shows � as a function of � for g � 2, the value
relevant to biexciton decay.

Physically, choosing W may be thought of as letting the
two polarizations go through different gates that introduce
different, but fixed time delays on the two colors. To see
this, we note first that each of the two factors of Eq. (13)
can indeed be interpreted as a time shift. This follows from
the fact that

 

k� Z
jk� Zj

� ie�ik=�eiE=� (16)

for k � E; see Fig. 2(a). This represents a shift of the wave
function in coordinate space by 1=� which can also be
interpreted as a (nonrandom) shift in time by 1=�.
Therefore, the two factors in Wopt may be implemented,
approximately, by manipulating the optical paths.

It is important to understand that the manipulation of the
quantum chronology proposed here is a fixed unitary ma-
nipulation of the wave function, which is a nonrandom
object. It is not a manipulation of the individual detection
events which are random and uncontrollable. However, the
probability distribution for these random events is deter-
mined by the wave function according to the rules of
quantum mechanics.

From Eq. (13), we see that Wopt has two factors, affect-
ing the two photons. Figure 3 explains why both photons
must be manipulated: to yield entangled photons, all the
properties distinguishing the x and y polarized photons
must be erased. This requires that: the arrival times at the
detector D of photons with energies Ex (the red photons in
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FIG. 2 (color online). (a) The argument ofWopt as a function of
k2 � Ey for k1 � Ex. The dashed line represents a feasible linear
approximation, generated by an optical delay. (b) The off diago-
nal matrix element � for Wopt, as a function of the ratio �u=�.
For typical biexciton decays, �u=� � 2. (c) � as a function of
the color matching dimensionless parameter, �, for �u=� � 2.
The maximal value occurs when � � 0. The width of the peak is
of order �.
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Fig. 3) must be independent of polarization, and likewise
for the photons with energy Ey (the blue photons in the
figure).

Suppose that we let the y-polarized photon emitted first
(red arrow on left side of the figure), travel a distance
longer by ‘� 1=� from the photon emitted second (blue
on the left) thereby reversing their order (‘ � 0 is arbi-
trary). Now the time order (chronology) of both polariza-
tions agrees, the first photon is blue and the second red.
However, the which path information is not yet erased. For
the red photon to arrive at the same time, the x-polarized
photon emitted second must be delayed by a distance ‘. For
the blue photon to arrive at the same time, the x-polarized
photon emitted first must be delayed by a distance 1=�.
The average delay between the time of arrival of the blue
and red photon is then 2‘.

The extra optical paths can be represented as unitary
gates acting on the photon states by eikL, where L is the
path length. The implementation of the delays described
above is given by

 Ux � eik2=�eik1‘; Uy � eik1�‘�1=��: (17)

It follows that W � U	xUy � eik1=�e�ik2=� which, by
Eq. (16), approximates Wopt.

From the above discussion, we see that although an
exact Wopt transformation, Eq. (13), may be an experimen-
tal challenge, it should be possible to implement suitable
approximations. A possible optical setting is depicted in
Fig. 4.

In summary, entanglement can be created by a non-
invasive (unitary) manipulation of the quantum chronol-

ogy. This provides a possible and practical avenue for
creating entangled photon pairs on demand.
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FIG. 4 (color online). An optical setup which introduces the
appropriate delays to each of the photons. BS (PBS) stands for a
(polarizing) beam splitter, and MC for a monochromator. The
MC (approximately linear) dispersion can be set to obtain an
approximation to Wopt of Eq. (13). The photons pass the first
beam splitter and MC, are reflected back by the mirrors and after
passing through the MC again, they are measured. The optical
path are chosen as 2Dy

1 � D� 1=�� ‘, 2Dy
2 � D, 2Dx

1 � D�
1=�, and 2Dx

2 � D� ‘, where D is arbitrary.

FIG. 3 (color online). A space-time diagram representing the
path of the photons. For clarity, x and y polarized photons are
drawn as propagating to the left and right, respectively. A delay
is represented by reflecting a photon back in space. An observer
located a distance D from the origin cannot distinguish between
the x and y polarized pairs, neither by their arrival times nor by
their energies (for � � 0). ‘ is an arbitrarily chosen distance,
which determines the average time difference between the actual
detection of the first and second photons.
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