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We present the exact solution of the Falicov-Kimball model after a sudden change of its interaction
parameter using nonequilibrium dynamical mean-field theory. For different interaction quenches between
the homogeneous metallic and insulating phases the system relaxes to a nonthermal steady state on time
scales on the order of @=bandwidth, showing collapse and revival with an approximate period of
h=interaction if the interaction is large. We discuss the reasons for this behavior and provide a statistical
description of the final steady state by means of generalized Gibbs ensembles.
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How does an isolated quantum-mechanical many-body
system develop after it is suddenly forced out of thermal
equilibrium? Under which conditions does it relax to a new
steady state, and how fast? Is it ergodic so that it reaches a
new thermodynamic equilibrium, or does the final state
depend on the initial state? Recently it has become feasible
to study these fundamental questions experimentally and
theoretically. In experiments with ultracold atomic gases
[1] it is possible to subject a prepared initial state to a rapid
change of system parameters. Long observation times are
possible due to the excellent isolation from the environ-
ment. For example, Bose-Einstein condensates were
quenched across the superfluid-insulator transition and
back [2], their collapse and revival after a quench was
observed [3], a quenched spinor Bose-Einstein condensate
was found to exhibit spontaneous symmetry breaking [4],
and a quantum version of Newton’s cradle was found not to
thermalize [5].

One might expect that a quenched system with many
interacting degrees of freedom will relax to a new thermal
state, characterized only by a few thermodynamic variables
such as internal energy and particle number. However this
may not be the case if the system is integrable, because
then the final state is constrained by infinitely many con-
stants of motion. Indeed, theoretical studies for one-
dimensional hard-core bosons [6,7] (experimentally real-
ized in Ref. [5]) and for the Luttinger model [8] found that
these integrable systems relax to nonthermal steady states.
Nevertheless for both models the final state is described by
a generalized Gibbs ensemble [6], which maximizes the
entropy subject to all constraints. On the other hand, for
nonintegrable and unconstrained systems the usual Gibbs
ensemble should describe the final steady state. In contrast
to this expectation recent numerical studies for finite one-
dimensional systems of soft-core bosons [9] and spinless
fermions [10] did not find thermalization. While the rea-
sons for this behavior are not yet understood, hard-core
bosons in two dimensions do thermalize as expected [11].
Clearly finite-size effects must be well controlled in all
such calculations in order to obtain the correct behavior at
large times.

Dynamical mean-field theory (DMFT) [12,13], which
has become a standard technique for correlated systems in
equilibrium, can also provide insight into their quantum
dynamics, e.g., in the presence of time-dependent external
fields [14,15]. DMFT has the conceptual advantages that it
is formulated in the thermodynamic limit so that finite-size
lattice effects are eliminated, and that it becomes exact for
high-dimensional lattices. As such, it is complementary to
numerical methods for finite low-dimensional systems.
The characteristic features of DMFT for fermions [13] or
bosons [16], namely, a local self-energy derived from a
local action with self-consistency condition, persist also for
nonequilibrium situations.

In this Letter we use DMFT to study quenches in the
interaction parameter of the Falicov-Kimball (FK) model.
This lattice model describes itinerant c electrons and im-
mobile f electrons that interact via a repulsive local inter-
action U [17]. The Hamiltonian is given by

 H �
X
ij

Vijc
y
i cj � Ef

X
i

fyi fi �U
X
i

fyi fic
y
i ci; (1)

i.e., it is similar to the Hubbard model except that only one
electron species can hop between lattice sites. In DMFT
the effective local action for the c particles is quadratic, so
that their Green function can be obtained exactly [18,19].
The equilibrium solution describes correlation-induced
transitions between metallic, insulating, and charge-
ordered phases [20]. The FK model proved very useful as
a guide for the application of DMFT to the Hubbard model.
It currently plays a similar role for nonequilibrium DMFT,
in particular, since no appropriate real-time impurity solver
is yet available for the Hubbard model, although, e.g.,
time-dependent numerical renormalization group [21] is
a promising candidate. So far, however, even the self-
consistency equation has required tremendous numerical
effort for a general nonequilibrium situation due to lack of
time-translational invariance [15]. For the investigation of
an interaction quench we consider a semielliptical density
of states, which leads to a dramatic simplification of the
self-consistency equation both for the FK and the Hubbard
model.
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We assume that the system is prepared in thermal equi-
librium at temperature T for times t < 0; at t � 0 the
interaction is suddenly switched from the value U� to a
new value U�, so that the time evolution for t � 0 is
governed by the new Hamiltonian [22]. Below we obtain
the exact nonequilibrium Green function for arbitrary
quenches and arbitrary large times.

Nonequilibrium DMFT.—The theory is formulated in
terms of contour-ordered real-time Green functions. In
general, this formalism is appropriate to describe an iso-
lated system, where the initial state is a density matrix [23].
We use the Keldysh Green functions Gij�t; t0� �
�ihTCci�t�c

y
j �t
0�i, which are defined on the contour C that

runs from a negative tmin to a positive tmax, then from tmax

to tmin, and finally to tmin � i� [15]. Here h�i �
Tr�e��H�tmin���N�=T�	 is the thermal expectation value with
chemical potential � and total particle number N. For the
FK model the local Green function G�t; t0� in the homoge-
neous phase is calculated from a local action [15,18],
 

G�t; t0� � �i
Trc;f�e

��H0TCS1S2c�t�c
y�t0�	

Trc;f�e
��H0TCS1S2	

; (2a)

S1 � exp
�
�i

Z
C
d�t
Z
C
d�t0cy��t����t; �t0�c��t0�

�
; (2b)

S2 � exp
�
�i

Z
C
d�t U��t�cy��t�c��t�fy��t�f��t�

�
; (2c)

where the operators are in the interaction representation
with respect to H0 � �Ef ���f

yf��cyc, and @ � 1.
After tracing out the f electrons and setting w1 � hf

yfi �
1� w0 one has

 G�t; t0� � w0Q�t; t
0� � w1R�t; t

0�; (3a)

where Q�t; t0� and R�t; t0� are given by (2) but without Trf
and with fy��t�f��t� replaced by 0 and 1, respectively. From
(2) follow the equations of motion

 �i@Ct ��	Q�t; t0� � �� 
Q��t; t0� � �C�t; t0�; (3b)

 �i@Ct ���U�t�	R�t; t0� � �� 
 R��t; t0� � �C�t; t0�; (3c)

where �f 
 g��t; t0� �
R
C d�tf�t; �t�g��t; t0� denotes the convo-

lution, @Ct the derivative, and �C�t; t0� the � function along
the contour [15], and the Green functions obey antiperiodic
boundary conditions.

In DMFT the contour self-energy is local and its skel-
eton expansion in terms of the contour Green function is
the same as that of the self-energy of the local problem (2),
determined from its Dyson equation

 �i@Ct ���G�t; t0� � ���� �	 
G��t; t0� � �C�t; t0�: (4)

On the other hand, the lattice Dyson equation provides a
relation between the self-energy and the lattice contour
Green function Gij�t; t

0�,

 �i@Ct ����k�Gk�t;t
0����
Gk��t;t

0���C�t;t0�; (5a)

where �k are the eigenvalues of the matrix Vij. In the
corresponding eigenbasis the lattice contour Green func-
tionGk�t; t0� � G�k�t; t

0� is diagonal and depends on k only
through �k. The self-consistency equation

 G�t; t0� �
Z
dkGk�t; t

0� �
Z
d�����G��t; t

0�; (5b)

then closes the problem; i.e., there are three equations (3)–
(5) for three unknowns G�t; t0�, ��t; t0�, ��t; t0�. For a
general density of states ���� the numerical evaluation of
(5) is expensive, because the integral equation (5a) must be
solved for every integration point in (5b) [15]. This prob-
lem simplifies dramatically for a semielliptic density of
states ���� �

��������������������
4V2 � �2
p

=2�V. In this case, the Hilbert
transform g�z� �

R
d�����=�z� �� satisfies the equation

zg � 1� V2g, and this also holds for linear operators [24],
e.g., z � �i@Ct ��� �� and g � G�t; t0�. Thus (5) reduces
to

 �i@Ct ���G�t; t0� � ���� V2G	 
G��t; t0� � �C�t; t0�;

so that, by comparison with (4),

 ��t; t0� � V2G�t; t0�: (6)

Analytic solution.—We now solve (3) and (6) for an
interaction quench at t � 0. Because the Hamiltonian
does not change for times t < 0, the Green functions take
their equilibrium values when both t < 0 and t0 < 0. We
take this as an initial condition in Eq. (3) and remove the
vertical part of the contour by letting tmin ! �1; correla-
tions such as G�t; tmin � i�� between times t on the real
part of the contour and tmin � i� on the imaginary part
vanish in this limit. Using Langreth rules [23] we then
recast (3) into a set of coupled integro-differential equa-
tions for the lesser component G<�t; t0� � ihcy�t0�c�t�i
and the retarded component GR�t; t0� � �i��t� t0� �
hfcy�t0�; c�t�gi. Directly from these rules and the fact that
any retarded function f�t; t0�must vanish for t < t0, one can
see that within these equations the retarded Green func-
tions with t > t0 > 0 and 0> t > t0 are decoupled from all
other components. Moreover, the corresponding two sets
of equations differ only in the value of U, and both are
translational invariant in time. Thus they can be written in
terms of the Fourier transforms gR
�z� (
 for t, t0 _ 0,
respectively) with respect to t� t0,
 

gR
�z� � w0q
R

�z� � w1r

R

�z�; (7a)

qR
�z� � �z��� V
2gR
�z�	

�1 (7b)

rR
�z� � �z��� V
2gR
�z� �U
	

�1: (7c)

The same set of cubic equations determines the equilib-
rium Green function [19], but in the present case � is
always the chemical potential of the initial thermal state
[22]. The remaining components of retarded and lesser
Green functions are then solved for by using separate
Fourier transform with respect to t and t0 in each region
where both t and t0 do not change sign. For the most
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important sector with both time arguments after the
quench, we obtain G<

���t; t
0� � G<�t; t0���t���t0� by

double Fourier transform,
 

~G<
���z;���

Z
dteizt

Z
dt0ei�t

0
G<
���t;t

0� (8a)

��
Z
d!

f�!�

2�V2

M�z;!��M���
;!�


z��
; (8b)

with the abbreviations

 M�z;!� � �1� KA�z; !�	�1 � �1� KR�z;!�	�1; (8c)

 K	�z;!� � V2�w0q
R
��z�q

	
��!� � w1r

R
��z�r

	
��!�	: (8d)

Note that the initial state enters (8b) via the Fermi function,
f�!� � 1=�1� e�!�. Similar expressions are derived for
the other Green functions Q< and R< [24].

Time-dependent expectation values of observables are
now obtained by inverse Fourier transformation and nu-
merical integration. Below we discuss the double occupa-
tion D�t� � �iw1R

<�t; t� and the momentum distribution,
i.e., the occupation n��; t� of single-particle eigenstates j�i.
The latter is given by n��; t� � �iG<

� �t; t� as defined below
(5a). The total density nc is conserved, and the internal en-
ergy E � hHi ��nc jumps by �E � �U� �U��D�0��
at the quench [22].

Simplifications occur in the limit of infinite waiting
time. For t! 1 the partial Fourier transformation
G<�!; t� �

R
dsei!sG<�t� s=2; t� s=2� has a well-

defined limit g<1�!�, which is determined only by the
singularity at z � �� in (8b). While G<�!; t� is complex
in general, its long-time limit is purely imaginary,
 

g<1�!� �
Z
d!0

f�!0�

�V2 iRe�M�!� i0; !0�	 (9a)

� 2�ih�!�A��!�: (9b)

Plugging this result back into (3) and (6) we find that the
steady state is characterized by (i) a real positive function
h�!� which replaces the Fermi function f�!� in the equi-
librium expressions and (ii) the temperature-independent
spectrum for U� as given by A��!� � Im�gA��!�	=�. In
particular, E�t > 0� �

R
d!h�!��!���A��!�, D1 �

w1

R
d!h�!� Im�rA��!�	=�, and n1��� �R

d!h�!� Im��!� i0� ���A
��!��

�1	=�. It is remark-
able that subsequent quenches can be accounted for by
simply replacing the initial occupation function f�!� with
the steady-state occupation function h�!� in (8b) and (9).

Nonthermal steady state.—In the following we focus on
the case of half-filling for both c and f electrons (nc �
nf �

1
2 ). For these parameters a metal-insulator transition

occurs at the critical interaction Uc � 2V. Figure 1 shows
the double occupation D�t� for different quenches, both
within and between the two phases. In all cases we observe
relaxation to a new stationary value D1 on the time scale
1=V.

The relaxation is almost monotonic when the final in-
teraction U� is small [Fig. 1(a)], while a distinct overshoot
[Fig. 1(b)] or damped oscillations [Fig. 1(c)] arise after
quenches to large interactions (U� >V). Such transient
oscillations with period 2�=U are expected on general
grounds when hopping can be neglected [3,7,9,10], be-
cause the interaction part of the Hamiltonian alone leads
to a strictly 2�=U periodic time-evolution operator
exp��itU

P
ic
y
i cif

y
i fi�. For small hopping V � U� ordi-

nary time-dependent perturbation theory then shows that
the double occupancy oscillates for times t & 1=V.

We now discuss the nonthermal character of the final
steady state. In case of thermalization it would be fully
characterized by a new temperature and a new chemical
potential, which are fixed by density and internal energy
only. For Fig. 1 the initial temperature is chosen such that
the final energy E�t > 0� is the same for the two quenches
to U� � V [Fig. 1(a)] and also for the two quenches to
U� � 3V [Fig. 1(b)]. The stationary value D1 clearly
differs from the double occupation in the thermal state
with the same density and internal energy [thick arrows
in Figs. 1(a) and 1(b)]. This lack of thermalization is also
observed for the occupation n��; t� of single-particle states
(Fig. 2), for which the stationary value n1��� clearly differs
from the thermal value with the same E, nc, and U�.
Remarkably, thermalization does not even occur for an
infinitesimal interaction quench �U � U� �U� ! 0
and infinite waiting time. For this case we find from (9)
that �g<1�!� � �w1@!r

<�!��U. For T > 0 it can be
shown [24] that g<1�!� � �g<1�!� does not correspond to
any thermal state with temperature T � �T and chemical
potential �� ��.
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FIG. 1 (color online). Double occupation D�t� for quenches to
(a) U� � 1, (b)U� � 3, and (c) U� � 8, starting from an initial
metallic (U� < 2) or insulating state (U� > 2); the half-
bandwidth is 2V � 2. In (a) and (b), the internal energy is the
same after both quenches. Thick right-pointing arrows mark the
double occupation in the thermal state for interaction U� with
the same density and internal energy. These values differ from
the stationary value D1, marked by left-pointing arrows, which
are approached for large times. The inset in (a) shows a magni-
fication of the large-t behavior.
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Role of constraints.—Thermalization in the FK model
(1) is impossible because the immobile f particles can
never find their annealed thermal configuration. In addition
the behavior of the c particles is nonergodic for any fixed
configuration nf � fnf;ig. This is because for any given nf
the Hamiltonian of the c particles is quadratic, say with
single-particle eigenstates j
�i and energies �
� before
and after the quench. As a consequence the occupation
numbers n
� after the quench are time independent and
entirely determined by their equilibrium values before the
quench, n
� �

P

�f��
��jh
�j
�ij

2.
Thermalization is prevented by this memory of the

initial state that is frozen in n
� . Under this assumption
the best guess for the steady state of the c particles is a
generalized Gibbs ensemble [6], i.e., a density matrix
��nf	 which maximizes the entropy S��� � Tr�� log��
subject to all the constraints given for hn
�i. Since this
��nf	 is a mixture of product states made from fj
�ig, it
predicts the site-averaged stationary Green function for a
given configuration nf as g<1�nf	�!� � 2�

P

���!�

�
��n
� . This statistical prediction indeed agrees with
the exact DMFT result for the infinitesimal interaction
quench �U, as we now show using first-order perturbation
theory for j
�i. The first-order energy change is ��
� �
�U

P
inf;ih
�jc

y
i cij
�i, while the change of n
� is of

order �U2. This gives �g<1�nf	�!� � �2�@!
P

���!�

�
��f��
����
� � �w1@!r
<�nf	�!��U. Because the

probabilities P�nf	 of the f configurations are time-
independent and depend only on the initial state of the c
electrons, averaging over nf recovers our DMFT result for
�g<1�!�. Thus generalized Gibbs ensembles provide the
appropriate statistical description of this final steady state,
at least for simple observables. In this aspect our results,
which are strictly valid in infinite dimensions, resemble
those for one-dimensional integrable models [6–8].

Conclusion.—The exact DMFT solution of the FK
model after an interaction quench shows that this isolated
many-body system relaxes to a new steady state. The
momentum occupation and double occupation in the final

state do not correspond to any thermal state. Instead these
observables are described by means of generalized Gibbs
ensembles, averaged over all f configurations.

In general, DMFT has been very successful for corre-
lated systems in equilibrium and gives a good description
of local observables in three-dimensional systems. Its ap-
plication to nonequilibrium phenomena is thus very prom-
ising, and DMFT results for quenches in the Hubbard
model would be desirable. If the Hubbard model indeed
thermalizes, as expected for a nonintegrable system [11],
this would lead to a crossover between ergodic and non-
ergodic regimes. This crossover could be studied experi-
mentally with ultracold atomic gases in optical lattices,
e.g., with mixtures of polarized fermionic atoms for which
the lattice depth can be tuned separately.

We thank D. Vollhardt, K. Byczuk, and M. Rigol for
useful discussions. M. E. acknowledges support by
Studienstiftung des Deutschen Volkes. This work was sup-
ported in part by the SFB 484 of the DFG.

[1] I. Bloch et al., arXiv:0704.3011 [Rev. Mod. Phys. (to be
published)].

[2] M. Greiner et al., Nature (London) 415, 39 (2002).
[3] M. Greiner et al., Nature (London) 419, 51 (2002).
[4] L. E. Sadler et al., Nature (London) 443, 312 (2006).
[5] T. Kinoshita et al., Nature (London) 440, 900 (2006).
[6] M. Rigol et al., Phys. Rev. Lett. 98, 050405 (2007).
[7] M. Rigol et al., Phys. Rev. A 74, 053616 (2006).
[8] M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006).
[9] C. Kollath et al., Phys. Rev. Lett. 98, 180601 (2007).

[10] S. R. Manmana et al., Phys. Rev. Lett. 98, 210405 (2007).
[11] M. Rigol, V. Dunjko, and M. Olshanii, arXiv:0708.1324.
[12] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324

(1989).
[13] A. Georges et al., Rev. Mod. Phys. 68, 13 (1996).
[14] P. Schmidt and H. Monien, arXiv:cond-mat/0202046.
[15] V. Turkowski and J. K. Freericks, Phys. Rev. B 71, 085104

(2005); J. K. Freericks, V. M. Turkowski, and V. Zlatić,
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FIG. 2 (color online). Stationary n1��� for quenches to
(a) U� � 1 and (b) U� � 3 [same as in Figs. 1(a) and 1(b)],
compared to the corresponding thermal values (solid red line).
The inset shows a magnification of their differences.
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