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We realize a single-band 2D Bose-Hubbard system with Rb atoms in an optical lattice and measure the
condensate fraction as a function of lattice depth, crossing from the superfluid to the Mott-insulating
phase. We quantitatively identify the location of the superfluid to normal transition by observing when the
condensed fraction vanishes. Our measurement agrees with recent quantum Monte Carlo calculations for a
finite-sized 2D system to within experimental uncertainty.
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Measurements of condensed matter systems realized by
cold atoms in optical lattices are now performed with
sufficient accuracy to compare with ab initio calculations
[1–3]. Bosonic atoms in a lattice nearly perfectly realize
the iconic Bose-Hubbard (BH) Hamiltonian. Here, we
study the system’s momentum distribution, measure the
condensate fraction, and accurately identify the transition
point from the low temperature superfluid (SF) phase by
identifying when the condensate fraction vanishes.

The SF to Mott-insulator (MI) transition can be accessed
by changing the depth of the optical potential [4], and has
been observed in 1D, 2D, and 3D [2,5,6]. A range of
studies have verified the understanding of the MI phase
in 2D and 3D [1,2,7,8]. In contrast, the SF phase and the
details of the transition to MI have gone largely unstudied.
The only quantitative measurement locating the transition
is in 3D and is not in agreement with theory [3]. We focus
specifically on the superfluid phase of a 2D system and its
transition to a normal state: we observe the expected
increasing momentum spread and vanishing condensate
fraction as the system leaves the SF phase. The transition
point agrees with the best available calculations [9],
thereby locating a point on the nonzero temperature 2D
BH phase diagram. The condensate fraction in our nonzero
temperature system vanishes more sharply than expected
for a zero temperature inhomogenous system, confirming
that the superfluid regions are rapidly driven normal when
an insulator appears [10,11].

The physics of interacting systems frequently depends
on dimensionality: in 3D the SF is a conventional Bose-
Einstein condensate (BEC); in 2D, a Berezinskii-
Kosterlitz-Thouless (BKT) SF; finally, in 1D there is no
true SF. In contrast, only the detailed properties of the MI
phase depend on dimensionality. In the T > 0, 2D case
studied here, the existence of Bose condensation is a con-
sequence of the finite size of our trapped system. We
associate bimodal momentum distributions with the SF
phase, and use fits to the distribution to identify the
Bose-condensed fraction and thereby measure the transi-
tion point between SF and normal.

At low temperature the transition from SF is to a normal
state which crosses over to MI as the lattice depth increases
[10,11]. As a result any T > 0 measurement based on
condensate fraction will identify the SF to normal transi-
tion but will be largely insensitive to the subsequent cross-
over to MI.

We study samples of rubidium atoms in a sinusoidal plus
harmonic potential. For atom occupancy per lattice site
larger than unity [6,12], the low temperature SF phase
(shallow lattice) is expected to evolve into a structure
composed of alternating shells of SF and MI (deep lattice).
As the lattice deepens, each successive MI region appears
and grows, as probed in Ref. [8]. At T � 0 the amount of
SF varies smoothly with lattice depth giving no abrupt
changes in the momentum distribution to indicate a phase
transition. In this Letter, we simplify the situation by
working near unit filling, where the only insulating phase
is unit-occupied MI; thus, any observed signature can only
be the transition from SF to normal. Recent experiments
have shown that weak interactions lead to a decrease in the
2D BEC transition temperature [13]. Lattice potentials
increase the relative importance of interactions; indeed,
the onset of the MI phase corresponds to driving the critical
temperature to zero.

The BH model describes lattice bosons with a hopping
matrix element t, and an on-site interaction energy U. The
physics of the BH model depends only on U=t [14]. In an
infinite, homogenous T � 0 2D system, the transition from
SF to MI occurs at �U=t�c � 16:5 [9,15–17]. Remarkably,
we observe a sharp transition atU=t � 15:8�20� [18] in our
T > 0, finite-sized, harmonically trapped system.

Our data consist of images of atom density after sudden
release and time-of-flight (TOF), approximating the in situ
momentum distribution. Figure 1 shows 2D momentum
distributions (right) and cross sections (left). As evidenced
by Figs. 1(a) and 1(b) each diffraction order in the mo-
mentum distributions consists of a narrow peak on a broad
pedestal. Fitting to a bimodal distribution (see below), we
determine f, the fractional contribution of the narrow
component, and identify f as the ‘‘condensate’’ fraction.
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We associate images with non-negligible f as being in the
SF phase [19]. We emphasize that superfluidity is a trans-
port phenomena and cannot unambiguously be associated
with features in the momentum distribution [10,11,20].
This association is also imperfect at T > 0 because in 2D
trapped systems we expect a discernible condensate frac-
tion even after the vortex pairs of a BKT SF unbind [21],
destroying the 2D SF. f vanishes only when the resulting
phase-fluctuating quasicondensate vanishes [13,22].

To characterize the transition from SF to normal, we
extract two independent quantities from TOF images: f,
and an ‘‘energy scale’’ �. We also measure a related
quantity, the full width at half maximum (FWHM) � of
the quasimomentum distribution, which we compare to
theory. As the lattice depth is increased f vanishes con-
currently with a sudden increase in �, abrupt signatures
that we associate with the transition.

We produce nearly pure 3D 87Rb BECs with NT �
1:2�4� � 105 atoms in the jF � 1; mF � �1i state [2]. A
pair of linearly polarized, � � 820 nm laser beams forms a
30�2�ER deep vertical optical lattice along ẑ that divides
the 3D BEC into about 70 2D systems (turn-on time �
200 ms). The single photon recoil wave vector and energy
are kR � 2�=� and ER � @

2k2
R=2m � h� 3:4 kHz; m is

the atomic mass and h is Planck’s constant. The largest 2D
system, containing � 3000 atoms, has a chemical poten-
tial �2D � h� 600�100� Hz and we measure a tempera-
ture kBT � kB � 33�4� nK � h� 700�70� Hz. Since the

first vibrational spacing h� 33�1� kHz� �2D, kBT, this
system is well into the 2D regime. In addition, a weaker,
square 2D lattice in the x̂-ŷ plane is produced by a second
beam arranged in a folded-retroreflected configuration
[23], linearly polarized in the x̂-ŷ plane (turn-on time �
100 ms [24]). The intensities of both lattices follow ex-
ponentially increasing ramps, with 50 and 25 ms time
constants, respectively, and reach their peak values con-
currently. These time scales are chosen to be adiabatic with
respect to mean-field interactions, vibrational excitations,
and tunneling within each 2D system. The final depth of
the x̂-ŷ lattice determines U=t and ranges from V � 0 to
25�2�ER [25]. The lattice depths are calibrated by pulsing
the lattice for 3 �s and observing the resulting atom dif-
fraction [26].

We calculate U=t using a 2D band-stucture model and
the s-wave scattering length [27]. The �10% uncertainty
in U=t stems from the uncertainty in lattice depth [28].

Once both lattices are at their final intensity, the system
consists of an array of 2D gases each in a square lattice of
depth V with a typical density of 1 atom per lattice site. The
atoms are held for 30 ms, and all confining potentials are
abruptly removed (the lattice and magnetic potentials turn
off in & 1 �s and ’ 300 �s, respectively). Initially con-
fined states are projected onto free particle states which
expand for a 20.1 ms TOF [29], when they are detected by
resonant absorption imaging. Apart from effects of atomic
interactions during expansion and the initial size of the
sample, initial momentum maps into final position, so each
image approximates the x̂-ŷ projection of the momentum
distribution. We fit each momentum distribution to a sim-
ple function which describes the distributions over the full
range of U=t studied here, with just three free parameters.

First, we model the broad background as a thermal
distribution of noninteracting classical particles in a 2D
sinusoidal band with states labeled by quasimomentum qx
and qy, n�qx; qy� / exp	2�cos�qx=kR 
 cos�qx=kR�=��;
this contributes two fitting parameters: � and the non-
condensed atom number. In the shallow lattice limit, �
gives the temperature, � � kBT=t. This fit does not dis-
tinguish atoms thermally occupying higher momentum
states from atoms occupying these states in the ground
state wave function, i.e., from the quantum depletion of
the SF. n�qx; qy� multiplied by a suitable Wannier function
correctly describes the momentum distribution of atoms in
the MI phase to first order in t=U where � � U=4t is
unconnected to temperature. Our function fits the random
phase approximation (RPA) momentum distribution fairly
well even as higher order terms become important [2,30].

The second portion of the momentum distribution con-
sists of a narrow peak, which we interpret as Bose-
condensed atoms. We take the narrow peak to be the
inverted parabola of a Thomas-Fermi profile (of fixed
width for all comparable data [31]), characterized by a
single fitting parameter, condensed number.

The observed condensate peak width after TOF stems
largely from initial system size, not interaction effects
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FIG. 1 (color). Momentum distributions and cross sections at
U=t � 4�1�, 8(1), and 20(2). Each row shows a single momen-
tum distribution normalized by the total atom number; the lines
in the top right panel indicate trajectories along which four cross
sections were taken. The left panel shows the average of these
four sections (black solid line); the red dashed lines denote the fit
to the bimodal distribution.
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during TOF or the initial momentum spread. Here inter-
actions during TOF are reduced due to rapid expansion
along ẑ after release from the tightly confining vertical
lattice. Our analysis further reduces these interaction ef-
fects by excluding data inside the first Brillouin zone, with
the highest density. This decreases the measured FWHM of
the peak from 30�1� to 22�1� �m (from 0:26kR to 0:21kR).
Changing the TOF from 20.1 to 29.1 ms only increased the
FWHM from 22�1� to 28�1� �m (from 0:21kR to 0:17kR).

Figure 2(a) shows that as V increases, f vanishes at a
critical value Vcrit, while the total atom number remains
constant. We verified this disappearance does not result
from excessive irreversible heating of the system by ex-
ceeding Vcrit, then lowering the lattice and observing a
condensed fraction [6].

To gain a qualitative understanding of the vanishing
condensate fraction, we performed a nonzero temperature
mean-field theory (MFT) simulation of an array of 2D BH
systems in a 3D harmonic trap [32]. At T > 0 we determine
the entropy at small U=t that gives the observed � 45%
condensate fraction, and assume this entropy is unchanged
as V increases. The red dashed line in Fig. 2(a) shows the
MFT condensate fraction vs V at constant entropy. Given
that T � 0 MFT overestimates the transition [�U=t�MFT �

23:3, compared to �U=t�c � 16:5 from more accurate cal-
culations], the curve unexpectedly lies on the data. MFT
also gives f as function of U=t in units of �U=t�c. We
identify the transition point by fitting this function to the
data allowing �U=t�c to vary, yielding �U=t�c � 15:8�20� [a
lattice depth Vcrit � 9:0�5�ER].

Figure 2(b) displays � from the uncondensed back-
ground portion of the distribution. At large V we recover
the behavior expected in the MI phase; this measurement is
equivalent to observations of the modulated momentum
distribution in the MI phase [1,2]. � is monotonic with V,
varying smoothly across Vcrit. This is in agreement with
RPA theory where the onset of superfluidity affects only
states near zero quasimomentum. Figure 2(b) shows that
when V & 4ER (U=t & 3), kBT=t � 2:0�3�. Extrapolating
to V � 0 gives kBT � ER�=�2 � kB � 33 nK (valid
when T � ER). This temperature is well below the kB �
45 nK expected for noninteracting particles in our 2D
harmonic trap with f � 0:45; this reduction is similar to
that observed in Ref. [13], which focused on 2D atomic
systems with no 2D lattice.

A related characterization of the system is the FWHM �
of the quasimomentum distribution [6,9,17,19,33].
Figure 3 shows the width of the 2D distributions (see
Ref. [2]) as a function of V. In the SF phase � hardly
depends on V since the dominant feature of the distribution
is the condensate peak. � only begins to change very close
to the SF to normal phase transition when the heights of the
components of the bimodal distribution become compa-
rable (when the condensate disappears), consistent with
calculations in homogenous and trapped systems [9]. We
calculate � in the MI phase in the RPA [30] which accu-
rately connects to the large U=t limit (

���

2
p
kR along x̂
 ŷ

and kR along x̂). In the RPA, � is a function of U=t in units
of �U=t�c. The red dashed lines are fits to the measured
widths using two free parameters (joint between both
panels): in the MI region we use the RPA functional
form with �U=t�c as the first fit parameter, and the constant
width in the SF phase is the second. We obtain �U=t�c �
16:7�20�, in accord with the �U=t�c � 15:8�20� from our fit
to the condensate fraction.

We identify the point when the condensate fraction
vanishes (and � abruptly increases) with the onset of the
SF to normal transition, i.e., when a normal region begins
to rapidly expand in our inhomogeneous system. (Our
measured visibility, computed as in Refs. [1,7], abruptly
drops from near unity at U=t � 16.) Accurate numerical
calculations give values of �U=t�c: 16.25(10) [9] and 16.77
[17]. Perhaps most relevant are quantum Monte Carlo
(QMC) calculations which include the effects of harmonic
confinement; in this case, Wessel et al. [9] find that a MI
region first forms at �U=t�c � 17:2 [the exact value of
�U=t�c depends on the details of the harmonic potential].
Both values lie within our experimental uncertainty.

The calculations [9,17] are at zero temperature, and
while they agree with our observed �U=t�c, they do not

FIG. 2 (color). Condensed fraction f and � vs V (bottom axis)
or U=t (top axis). The dots denote values determined from 2D
fits to the full momentum distribution: small dots result from one
image and the large dots indicate data averaged over about 20
separate images. The uncertainties are their root mean squared
variation, and are indicative of the single-image uncertainties.
(a) Condensate fraction. The red dashed line is computed from
our MFT model. (b) Fit parameter �. At low U=t � is nearly
constant (blue dashed line), from which we infer an initial
temperature kBT � 2t. At large U=t � monotonically increases,
consistent with predictions of perturbation theory in the MI
phase (red dashed line).
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predict a sudden increase in peak width or a vanishing
condensate fraction at �U=t�c. At T � 0 and as U=t in-
creases past �U=t�c, where an inhomogeneous system first
develops a unit-occupied Mott core, the shell of SF persists
to large U=t. Thus, at T � 0, f drops rapidly at �U=t�c, but
does not vanish. Our system, however, is at T > 0, with a
reduced condensate fraction of � 45% for small V. Our
MFT model shows that this temperature quickly drives the
SF shells to the normal phase as U=t increases past �U=t�c.
As a result the SF shells rapidly go normal, and then Mott
regions form (see Refs. [10,11,34]). That this feature is
seen in preliminary T > 0 QMC calculations [33] under-
scores the need for further T > 0 calculations to compare
with experiment.

This experiment constitutes the measurement of a single
point of the nonzero temperature 2D BH phase diagram.
We expect future experiments will expand on this result at
different temperatures, densities, in different dimensions,
and in traps with more homogenous density distributions;
new theory should aid in the interpretation of these
experiments.
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FIG. 3 (color). Quasimomentum width vs V (bottom axis) or
U=t (top axis). The symbols denote the average FWHM of the
quasimomentum distribution along the axes of highest symmetry
(top: averaged along x̂
 ŷ and x̂-ŷ; bottom: averaged along x̂
and ŷ). The small and large dots and uncertainties are as
explained at Fig. 2. The red dashed line is the horizontally
displaced RPA momentum width, as discussed in the text, and
the vertical gray line denotes the location of the SF-normal
transition identified from the sudden increase in �.
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