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We consider the problem of finding communities or modules in directed networks. In the past, the most
common approach to this problem has been to ignore edge direction and apply methods developed for
community discovery in undirected networks, but this approach discards potentially useful information
contained in the edge directions. Here we show how the widely used community finding technique of
modularity maximization can be generalized in a principled fashion to incorporate information contained
in edge directions. We describe an explicit algorithm based on spectral optimization of the modularity and
show that it gives demonstrably better results than previous methods on a variety of test networks, both

real and computer generated.
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At the most fundamental level a network consists of a set
of nodes or vertices connected in pairs by lines or edges,
but many variations are possible, including networks with
directed edges, weighted edges, labels on nodes or edges,
and others. This flexible structure lends itself to the mod-
eling of a wide array of complex systems, and networks
have, as a result, attracted considerable attention in the
recent physics literature [1,2].

Many networks are found to display ‘“community struc-
ture,” dividing naturally into communities or modules with
dense connections within communities but sparser connec-
tions between them. Communities are of interest both in
their own right as functional building blocks within net-
works and for the insights they offer into the dynamics or
modes of formation of networks, and a large volume of
research has been devoted to the development of algorith-
mic methods for discovering communities—see [3] for a
review. Nearly all of these methods, however, have one
thing in common: they are intended for the analysis of
undirected network data. Many of the networks that we
would like to study are directed, including the World Wide
Web, food webs, many biological networks, and even some
social networks. The commonest approach to detecting
communities in directed networks has been simply to
ignore the edge directions and apply algorithms designed
for undirected networks. This works reasonably well in
some cases, although in others it does not, as we will see in
this Letter. Even in the cases where it works, however, it is
clear that in discarding the directions of edges we are
throwing away a good deal of information about our net-
work’s structure, information that, at least in principle,
could allow us to make a more accurate determination of
the communities.

Several previous studies, including our own, have
touched on this problem [4-7], but they have typically
not tackled the community structure question directly. In
this Letter we propose a method for finding communities in
directed networks that makes explicit use of the informa-
tion contained in edge directions. The method is an exten-

0031-9007/08/100(11)/118703(4)

118703-1

PACS numbers: 89.75.Hc, 02.10.0x, 02.50.—r

sion of the well established modularity optimization
approach for undirected networks [8], an approach that
has been shown to be both computationally efficient and
highly effective in practical applications [3].

The premise of the modularity optimization method is
that a good division of a network into communities will
give high values of the benefit function Q, called the
modularity, defined by [9]

Q = (fraction of edges within communities)

— (expected fraction of such edges). (D

Large positive values of the modularity indicate when a
statistically surprising fraction of the edges in a network
fall within the chosen communities; it tells us when there
are more edges within communities than we would expect
on the basis of chance.

The expected fraction of edges is typically evaluated
within the so-called configuration model, a random graph
conditioned on the degree sequence of the original net-
work, in which the probability of an edge between two
vertices i and j i8 k;k; /2m, where k; is the degree of vertex
i and m is the total number of edges in the network. The
modularity can then be written

1 kik;
=— A — =118, . 2
0= 5,545~ 5! puc, @

)

where A;; is an element of the adjacency matrix, §;; is the
Kronecker delta symbol, and c; is the label of the com-
munity to which vertex i is assigned. Then one maximizes
Q over possible divisions of the network into communities,
the maximum being taken as the best estimate of the true
communities in the network. Neither the size nor the
number of communities need be fixed; both can be varied
freely in our attempt to find the maximum.

In practice, exact optimization of the modularity is
computationally hard, so practical methods based on mod-
ularity optimization make use of approximate optimization

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.100.118703

PRL 100, 118703 (2008)

PHYSICAL REVIEW LETTERS

week ending
21 MARCH 2008

schemes such as greedy algorithms, simulated annealing,
spectral methods, and others [8,10-13].

In recent work on complexity reduction in networks,
Arenas et al. [5] have proposed a generalization of the
modularity to directed networks, which can be understood
in the following way. The expected positions of edges in a
directed network depend on their direction. Consider two
vertices, A and B. Vertex A has high out-degree but low in-
degree while vertex B has the reverse situation. This means
that a given edge is more likely to run from A to B than vice
versa, simply because there are more ways it can fall in the
first direction than in the second. Hence if we observe in
our real network that there is an edge from B to A, it should
be considered a bigger surprise than an edge from A to B
and hence should make a bigger contribution to the mod-
ularity, since modularity should be high for statistically
surprising configurations.

We put these insights to work as follows. Given the in- or
out-degree sequence of our directed network, we can create
a directed equivalent of the configuration model, which
will have an edge from vertex j to vertex i with probability
ki"k$* /m, where kj* and k9" are the in- and out-degrees of
the vertices. (Note that there is no factor of 2 in the
denominator now.) Then the equivalent of Eq. (2) for a
directed network is

1 ki."k‘?“t
=—N'4, -1 |5 3
0= S A= b 3)

ml.j

which is a special case of the formula given in [5]. Here A;;
is defined in the conventional manner to be 1 if there is an
edge from j to i and zero otherwise. Note that edges j — i
do indeed make larger contributions to this expression if k"
and/or k' is small.

As in the undirected case we can make use of the
modularity to find network communities by searching for
the division of the network that maximizes Q. One can in
principle make use of any of the methods previously
applied to modularity maximization, such as simulated
annealing or greedy algorithms. Here we derive the appro-
priate generalization of the spectral optimization method
of Newman [13], which is both computationally efficient
and appears to give excellent results in practice.

We consider first the simplified problem of dividing a
directed network into just two communities. We define s;
to be +1 if vertex i is assigned to community 1 and —1 if it
is assigned to community 2. Note that this implies that
>isi =n.Then &, . = 1(s;s; + 1) and

1 kl'l’lkqut 1
0= M%[Aij - ’mf }(s,-sj +1)= %STBS, 4)

where s is the vector whose elements are the s;, B is the so-
called modularity matrix with elements

Jin jout
— i
Bij - AU - m ’ (5)
and we have made use of >, A;=> k"= k™ =m.

Our goal is now to find the s that maximizes Q for a
given B.

In the undirected case the modularity matrix is symmet-
ric but in the present case it is, in general, not, and the lack
of symmetry will cause technical problems if we blindly
attempt to duplicate the eigenvector-based machinery pre-
sented for undirected networks in [13]. We can, however,
restore symmetry to the problem by the following trick.
Noting that Q is a scalar and therefore equal to its own
transpose, we take the transpose of Eq. (4) to give Q =
(2m)~'s"BTs and then take the average of this expression
and Eq. (4) to give

0= LsT(B + B7)s. (6)
4m

The matrix B + B is manifestly symmetric, and it is on
this matrix that we focus forthwith. Notice that B + BT is
not the same as the modularity matrix for a symmetrized
version of the network in which direction is ignored, and
hence we expect methods based on the true directed mod-
ularity to give different results, in general, to methods
based on the undirected version.

The leading constant 1/4m in Eq. (6) is conventional,
but makes no difference to the position of the maximum of
0, so for the sake of clarity we neglect it in defining our
optimization procedure.

The standard approach to optimization problems of this
type is first to solve the “relaxed” problem in which the s;
are allowed to take any real value, not just =1. Enforcing
the normalization constraint ¥ ;57 = n with a Lagrange
multiplier and differentiating, we then find that the maxi-
mum of Q is achieved when s is parallel to the vector v
satisfying (B + B”)v = Bv, where S is the largest (most
positive) eigenvalue of B + B In other words s should be
chosen parallel to the leading eigenvector of B + B7.
Unfortunately, our problem carries the additional con-
straint that s; = =1, which normally prevents us from
reaching this simple eigenvector optimum, but we do the
best we can and make s as close as possible to parallel with
v, meaning we choose the value of s that maximizes v’ - s.
It is straightforward to show that this gives s; = +1if v; >
0 and s; = —1 if v; <0, where v; is the ith element of v.
(If v; = 0, then s; = %1 are equally good solutions to the
maximization problem.)

Thus we arrive at a simple algorithm for splitting a
network: we calculate the eigenvector corresponding to
the largest positive eigenvalue of the symmetric matrix
B + B7 and then assign communities based on the signs
of the elements of this eigenvector.

As in the undirected case, the spectral method typically
provides an excellent guide to the broad outlines of the
optimal partition, but may err in the case of individual
vertices, a situation that can be remedied by adding a
“fine-tuning” stage to the algorithm in which vertices are
moved back and forth between communities in an effort to
increase the modularity, until no further improvements can
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be made [13]. We have incorporated such a fine-tuning in
all the calculations presented here.

So far we have discussed the division of a network into
two communities. There are a number of ways of general-
izing the approach to more than two communities, but the
simplest, which we adopt here, is repeated bisection. That
is, we first divide the network into two groups, then sub-
divide those groups and so on, the process stopping when
we reach a point at which further division does not increase
the total modularity of the network.

The subdivision of a community contained within a
larger network requires a slight generalization of the
method above. Consider the change in modularity AQ of
an entire network when a community g within it is sub-
divided. Defining s; as before for vertices in g, we find

1 s+ 1
AQ :%[ Z (Bij + Bji)%_ Z (Bij + Bji)j|

iLjEg LjEg

1
= |:(Bij + Bj;) — 5ijZ(Bik + By)ls;s;
ijEg kEg
1
= _—sT(B® + B®T)g, (7)
4dm

where we have made use of s? = 1 for all i and

1
B = By =56, (Bu+ By). ®)
kEg

In other words, B is the submatrix of B for the subgraph
g with the average of the appropriate row and column sums
subtracted from each diagonal element. Although B(®), like
B, is in general asymmetric, the sum B® + B®)7 is sym-
metric; hence Eq. (7) has the same functional form as
Eq. (6), and we can apply the same method to maximize
AQ.

Our complete algorithm for discovering communities or
groups in a directed network is thus as follows. We con-
struct the modularity matrix, Eq. (5), for the network and
find the most positive eigenvalue of the symmetric matrix
B + B” and the corresponding eigenvector. Each vertex is
assigned to one of two groups depending on the sign of the
appropriate element of the eigenvector, and then we fine-
tune the assignments as described above to maximize the
modularity. We then further subdivide the communities
using the same method, but with the generalized modular-
ity matrix, Eq. (8), fine-tuning after each division. If the
algorithm finds no division giving a positive value of AQ
for a particular community, then we can increase the
modularity no further by subdividing this community and
we leave it alone. When all communities reach this state
the algorithm ends.

We now give a number of examples of the application of
the method. For illustrative purposes, we first consider an
artificial computer-generated network, designed specifi-
cally to test the performance of the algorithm. In this
network of 32 vertices, vertex pairs are connected by edges

independently and uniformly at random with some proba-
bility p. The edges are initially undirected. The network is
then divided into two groups of 16 vertices each and edges
that fall within groups are assigned directions at random,
but edges between groups are biased so that they are more
likely to point from group 1 to group 2 than vice versa.

By construction, there is no community structure to be
found in this network if we ignore edge directions—the
positions of the edges are entirely random—and this is
confirmed in Fig. 1(a), which shows the results of the
application of the undirected modularity maximization
algorithm. If we take the directions into account, however,
using the algorithm presented in this Letter, the two com-
munities are detected almost perfectly: just one vertex out
of 32 is misclassified—see Fig. 1(b).

Even in networks where there is clear community struc-
ture contained in the positions of the edges, it is still
possible for the directions to contribute additional useful
information. As an example of this type of behavior, con-
sider the network shown in Fig. 2, which has 32 vertices
and three communities. For two of the communities, con-
taining 14 vertices each, there is a high probability of
connection between pairs of vertices that fall in the same
community but a lower probability if the vertices are in
different communities. Structure of this kind, in which
edge direction does not play a role, can in principle be
found by algorithms designed for undirected networks. The
third community, however, is different. It has four vertices,
each of which has a high probability of connection to every
other vertex. The only feature that distinguishes this third
community as separate is the direction of its edges—two
of the four vertices have high probability of ingoing edges,
the other two have high probability of outgoing edges, and
there are also a small number of additional edges running
from the former to the latter.

Applied to this network, the standard undirected com-
munity detection algorithm finds the two large commun-
ities with ease, but the remaining community is not found
and its vertices are dispersed by the algorithm among the
other communities [Fig. 2(a)]. Our directed algorithm, on

FIG. 1 (color online). Community assignments for the two-
community random network described in the text using (a) a
standard modularity maximization that ignores edge direction
and (b) the algorithm of this Letter. The shaded regions represent
the communities discovered by the algorithms; the true com-
munity assignments are denoted by vertex shape and color.
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FIG. 2 (color online). Community assignments for the three-
community random network described in the text as generated
by (a) standard undirected modularity maximization and (b) the
algorithm of this Letter.

the other hand, finds all three communities without diffi-
culty [Fig. 2(b)]. Again the algorithm has made use of
information contained in the edge directions to identify
structures not accessible to other methods.

Turning now to real-world networks, consider Fig. 3,
which shows a network representation of a sporting com-
petition. Networks of this kind have received some atten-
tion in the recent literature for their clear but nontrivial
community structure. The vertices in the network represent
the teams in one of the regional competitions or ‘“‘confer-
ences” of U.S. universities in the game of American foot-
ball. Edges join pairs of teams that played one another
during the 2005 football season. Most previous studies
have represented such networks as undirected, but useful
information can be extracted from a directed version in
which the edges point from the winner to the loser of each
game [14].

Figure 3(a) shows the two communities found in this
network when edge direction is taken into account. The
teams are shaded according to whether they won or lost a
majority of their (within-conference) games and, as the
figure shows, the two communities correspond precisely to
these two groups in this case—the algorithm has divided
the more successful and less successful teams into different
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FIG. 3 (color online). Community assignments for the network
of American football teams competing in the “Big Ten” confer-
ence in 2005 as generated by (a) the algorithm of this Letter and
(b) a standard undirected modularity maximization. The shaded
regions represent the communities discovered by the algorithms
while vertex shapes and colors indicate whether teams won or
lost a majority of their games during the season.

communities using the information contained in the edge
directions of the network. (Similar results are seen in the
networks for other years.) If, however, we ignore the edge
directions of the network and apply the undirected modu-
larity algorithm, the method entirely fails to identify the
two groups, as shown in Fig. 3(b), indicating that in this
case a crucial part of the community information is con-
tained in the edge directions.

In summary, we have presented a method for detecting
community structure in directed networks that makes ex-
plicit use of information contained in edge directions, in-
formation that most other algorithms discard. Our method
is an extension of the established modularity maximization
method widely used to determine community structure in
undirected networks. We have applied the method to a
variety of networks, both real and simulated, showing
that it is able to recover known community structure and
extract additional and revealing information not available
to algorithms that ignore edge direction. The computa-
tional efficiency of the algorithm is essentially identical
to that of the corresponding algorithm for undirected net-
works, and hence we see no reason to use the undirected
algorithm on directed graphs; we recommend the use of the
full directed algorithm in all cases where researchers wish
to analyze both edge placement and edge direction.
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