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Previous work on undirected small-world networks established the paradigm that locally structured
networks tend to have a high density of short loops. On the other hand, many realistic networks are
directed. Here we investigate the local organization of directed networks and find, surprisingly, that real
networks often have very few short loops as compared to random models. We develop a theory and derive
conditions for determining if a given network has more or less loops than its randomized counterparts.
These findings carry broad implications for structural and dynamical processes sustained by directed
networks.
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Asymmetric interactions are widespread in natural and
technological networks, particularly when the network
transports a flow or underlies collective behavior [1]. The
structure of such directed networks can be characterized by
the statistics of loops, the building blocks of closed paths,
which provides information on structural correlations [2],
motifs, robustness and redundancy of pathways, and im-
pacts dynamical as well as equilibrium critical phenomena
on the network [3].

In undirected networks, the large number of short loops
together with small diameter gives rise to the small-world
effect encountered in many real systems [4]. Strikingly, in
this Letter we show that there is a large class of directed
networks for which the number of loops is strongly re-
duced with respect to the random hypothesis. The directed
neural network of C. elegans, for example, has less than
50% of the short loops expected from a random ensemble
with the same degree sequence, despite the well-known
fact that, when regarded as an undirected network [4], it
has a clustering coefficient 5.6 times larger than randomly
rewired versions of the network.

Motivated by this empirical finding, we demonstrate
numerically and analytically that degree correlations [5]
strongly constrain the loop structure of directed networks.
Moreover, we go beyond the degree-correlated picture and
derive conditions for determining if a given network has
more or less loops than its randomized counterparts. We
characterize the network local organization in terms of
short loops and its global organization in terms of long
loops. We compare our analytical results with exact (when
possible) or approximate numerical calculation of the
number of loops in a class of directed networks that
includes foodweb, power-grid, metabolic, neural, tran-
scription, and WWW networks. Our findings that many
directed networks are underlooped may have broad impli-
cations given that such networks exhibit, for example,
improved stability in foodweb systems [8] and enhanced

synchronization [9] and transportation properties in vari-
ous other systems [10].

Short loops in random networks.—We first derive the
expected number of self-avoiding loops in directed random
networks. The general way to construct random uncorre-
lated undirected networks is by means of the Molloy-Reed
model. Given a set of nodes V � fi:1; . . . ; Ng, the construc-
tion is based on generating a sequence of degrees fkig from
a given degree distribution P�k� with a structural cutoff
K � O�N1=2� [11], and randomly connecting the links. In
this ensemble, the expected number N L of short loops of
length L is given by [12,13]

 Eundir�N L� �
1

2L

�
hk�k� 1�i

hki

�
L
: (1)

This formula implies that a network with diverging hk2i has
many more short loops than networks with finite hk2i. In
particular, scale-free networks with scaling exponent � �
3 have many short loops while Erdős-Rényi networks have
a negligible number of short loops in the N ! 1 limit. We
now show that this expression can be generalized to ran-
dom directed networks. We again consider the Molloy-
Reed construction but in this case we draw a sequence of
incoming and outgoing links f�kiin; k

i
out�g from a degree

distribution P�kin; kout� for all nodes i 2 V. This distribu-
tion, which is not factorisable in general, describes corre-
lated variables kin and kout at any given node. For directed
uncorrelated networks, the structural cutoffs for in- and
out-degrees satisfy KinKout < hkiniN. Proceeding as in the
undirected case [12], we obtain that the expected number
of loops of size L in the directed network ensemble is given
by

 Edir�N L� �
1

L

�
hkinkouti

hkini

�
L
; (2)

where this approximate expression is valid for large N and

PRL 100, 118701 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
21 MARCH 2008

0031-9007=08=100(11)=118701(4) 118701-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.118701


loop length satisfying L� Nhkinkouti
2=h�kinkout�

2i. For
undirected networks, Edir�N L� reduces to Eundir�N L�
because the incoming connectivity is k and the outgoing
connectivity at the end point of a link (on a self-avoiding
loop) is k� 1. The only difference is a factor 2, which
accounts for the orientation on the loops in Eq. (2).

We observe from Eq. (2) that, in directed networks, the
one-point correlation between the number of incoming and
outgoing links modulates the expected number of short
loops. Indeed, if kin and kout on the same nodes are not
correlated, then the number of short loops is strongly
reduced as compared to the case when kin and kout are
positively correlated. The Barabási-Albert (BA) networks
[14], for example, have small degree correlations and are
within the scope of Edir�N L� and Eundir�N L� for uncorre-
lated random networks [15]. If we consider the undirected
BA model, we find that the networks have many short
loops compared to random Erdős-Rényi networks (in fact
hk�k� 1�i � log�N�) [16]. In contrast, if we consider the
directed version of the BA model (in which the incoming
links are linked preferentially, and hence hkinkouti �
hkinihkouti), the networks have a negligible number of short
loops just as the Erdős-Rényi networks in theN ! 1 limit.

Short loops in a given network.—A different approach is
needed for counting the loops of a specific directed net-
work, as required in the study of real systems. In this case,
as in the case of undirected networks [16], the number of
short loops can be expressed in terms of powers of the
adjacency matrix. In particular, the number of (self-
avoiding) loops of length L can be expressed as the total
number of closed paths of length L, i.e., Tr AL=L, minus
the closed paths of length L composed of self-intersecting
loops. The number of loops of length L in a network with
adjacency matrix A is then given by N L �
1
L

P
fL‘gc�fL‘g���L�

P
‘L‘�

P
i
Q
‘�A

L‘�ii, where the se-
quence fL‘g describes the loop composition of the paths
for every correction term (for example, in the case L � 5
we will find a correction term involving paths composed of
fL‘g � f2; 3g directed loops). The coefficients c�fL‘g� re-
main small for small L.

Starting from this general formula we derive upper and
lower bounds for the number of loops in a given directed
network. The upper bound is simply given by the sum of all
closed paths of length L, i.e. N L �

1
L Tr AL � 1

L

P
n�

L
n ,

where the sum is performed over all the eigenvalues (in-
cluding multiplicities). To find a lower bound we have to
express N L in terms of the eigenvalues of the adjacency
matrix A and in terms of its Jordan basis. In this way, it
follows that N L ’ Tr AL=L provided that �L �
maxi

P
j
P0
m
�Lm�j�

�m
j PijP�1

j	m;ij � 1, where P is the matrix

of generalized eigenvectors of A in the Jordan decomposi-
tion A � PJP�1 [9] and

P0
m indicates a sum over the

dimension of each Jordan block with associated eigenvalue
�j, under the constraint that indices j and j	m are in the
same block. If �L � 1, the dominant term in the expansion

of N L is the one with fL‘g � fLg and we have N L ’
1
L

P
n�

L
n .

Comparing these results with the result found for the
random case in Eq. (2), it follows that a sufficient condition
for a specific network to have less short loops of length L
than its randomized versions is

P
n�

L
n < �hkinkouti=hkini�

L.
Conversely, if �L � 1, a condition for the network to have
more loops is

P
n�

L
n > �hkinkouti=hkini�

L. For loops in a
certain range of values L 2 �1; Lc�, it is convenient to
restate these conditions as

 

�� �
�X
n

�Ln

�
1=L

<
hkinkouti

hkini
(3)

for the network to be under-shortlooped and

 

�� >
hkinkouti

hkini
if � � max

L2�1;Lc�
�L � 1 (4)

for the network to be over-shortlooped on average over
loop lengths L 2 �1; Lc�. The overbar indicates average
over L 2 �1; Lc� for Lc satisfying the condition for Eq. (2)
to be valid.

Long loops.—The above analysis applies to short loops.
Counting long loops is a difficult problem for which ap-
proximate Monte Carlo [17] and statistical mechanics
methods [18] have been proposed in the undirected case.
To derive a necessary condition for long directed loops to
be present, we use percolation predictions [6] for two-point
correlated networks, where the out-degree of a node is
correlated (beyond the random condition) with the in-
degree of the nodes at the end points of its links. These
networks are expected to account for the leading correla-
tion term that distinguishes a real network from its uncor-
related random counterparts. In networks with two-point
degree correlation, the percolation condition for the largest
strongly connected component (LSCC) is ~�> 1, where ~�
is the largest eigenvalue of the two-point correlation matrix
Ck0;k � 
koutP�k0jk�� [6]. A strongly connected compo-
nent of a network is a set of nodes where each node can
reach and be reached by all the others through directed
paths. For the uncorrelated random networks of the
Molloy-Reed ensemble, the largest eigenvalue of matrix
C reduces to the known result ~� � hkinkouti

hkini
. For a specific

network, which is not necessarily well approximated by an
uncorrelated ensemble average, we can use the approxi-
mation ~� ’ �, where � denotes the largest eigenvalue of
the adjacency matrix [19]. Consequently the percolation
conditions for the real and randomized networks are re-
spectively �> 1 and hkinkouti

hkini
> 1. Since the existence of a

giant LSCC is a necessary condition for the network to
have long directed loops, long loops are strongly sup-
pressed when � � 1. Because percolation only provides
a necessary condition for the existence of long loops, we
make quantitative predictions using a modified message-
passing algorithm [20] based on the belief propagation
(BP) algorithm proposed in [18]. The algorithm provides
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an estimation for the entropy ��L� � log�N L�=N of the
loops of length L, from which we calculate N L. Within
the conditions discussed in [20], namely, that the network
is large and has a large number of loops, this algorithm is
able to predict the maximal loop length Lmax reliably.
However, as shown below, the BP algorithm predicts cor-
rectly the under- or over-looped nature of all networks in
our database, including those with a small number of nodes
or loops [21], and the results are in very good agreement
with the behavior suggested by the relative values between
� and hkinkouti

hkini
.

Real networks.—We consider several real directed net-
works [22]: (i) Texas power grid; (ii) food webs
(Chesapeake, Mondego, Littlerock, and Seagrass regions);
(iii) metabolic network of E. coli, where the nodes repre-
sent metabolites; (iv) Notre Dame University’s WWW;
(v) C. elegans’ neural network; and the (vi) transcription
network of S. cerevisiae, where the nodes correspond to
regulating and regulated genes. Figure 1 shows the distri-
butions of short loops (measured using exact enumeration
[23]) for both the directed and undirected versions of four
real networks along with the randomized counterparts of
same number of in- and out-links in each node. The
randomized networks are well approximated by the theo-
retical predictions in Eqs. (1) and (2), as indicated by the
lines in the figure. Directed networks tend to have less
loops than undirected networks, as expected. However,
while real undirected networks tend to have more loops
than random ones, the opposite occurs in the directed case.

Indeed, six out of the nine directed networks we ana-
lyzed are under-shortlooped, as shown in Fig. 2 and
Table I. The only exceptions are the metabolic and tran-
scription networks, which are marginally over-

shortlooped, and the WWW network, which is the only
social network present in our database [24]. These findings
are very different from what one would anticipate from
previous studies on undirected networks, where highly
clustered small-world networks prevail. Table I summa-
rizes the network parameters and results for all directed
networks analyzed, where �� is calculated by summing over
all loops up to a length cutoff Lc chosen to be 6 [24]. Our
predictions compare well with direct data analysis.

Conclusions.—We have studied deviations in the loop
statistics and provided criteria for determining if a network
is underlooped or overlooped compared to its randomized
counterparts. Empirical evidence coming from the study of
different types of natural and technological networks
shows that many of these different networks are under-
shortlooped, a surprising result which is in sharp contrast
with the tendency of undirected networks to be over-
shortlooped. The only socio-technological network in our
databse, the ND WWW, contains instead very many short
loops. We expect that our results will be important and
further extended in the study of social, biological and
technological systems. In social networks, the abundance
of directed loops can be an important factor in the promo-
tion of mutual reinforcement amongst agents [25], while in
cellular and neural networks it can play a major role in
information processing [26] and regulation [27]. In other
systems, the reduced number of directed loops can lead to
improved stability [8,9] and transportation properties [10],
which we hope will stimulate other applications of our
findings.
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FIG. 1 (color online). Number of short directed and undirected
loops in several networks, where different symbols correspond to
the numerically determined values for the real and random
counterparts of the networks. The lines indicate the theoretical
predictions in Eqs. (1) and (2) for random networks. Points on
the x axis indicate no loops.
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FIG. 2. Underlooped, overlooped, and undetermined regions in
the �short � ��=�hkinkouti=hkini� vs �long � Lreal

max=hL
rand
maxi diagram,

where Lreal
max and Lrand

max are predicted using the BP algorithm. The
points correspond to the predictions for both short and long loops
for the networks in Table I, except for the ND WWW, which is
over-shortlooped and is not shown because it is difficult to
calculate its �long. The actual counting of the loops confirms
the predictions (Table I).
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TABLE I. Properties of real directed networks: number of nodes N and linksM, eigenvalue �, hkinkouti=hkini, and spectral quantity ��
(left-hand side columns); loop structure and percolation properties (right-hand side columns). The values of � for the undetermined and
over-shortlooped cases are 96.0, 73.2, and 0.2 for the metabolic, transcription, and WWW network, respectively.

Network parameters Prediction/Actuala

Network N M � hkinkouti
hkini

�� Short loopsb Percolation/LSCCc Long loopsd

Littlerock FW 183 2494 7.00 11.47 7.93 und/und p-p/(12 vs 92) und/unde

Chesapeake FW 39 177 2.85 3.12 2.40 und/und p-p/(41 vs 76) und/und
Mondego FW 46 400 8.95 9.14 5.86 und/und p-p/(76 vs 92) und/unde

Seagrass FW 48 226 1.00 4.05 1.65 und/und np-p/(0 vs 75) und/und
Metabolic net. 532 596 2.85 2.58 3.00 undet/over p-p/(82 vs 94) undet/undete

Power-grid net. 4889 5855 1.00 1.36 0.88 und/und np-p/(0.1 vs 33) und/und
ND WWW 325 729 1 497 135 152.00 43.14 153.32 over/over p-p/(17 vs 41) � � �

Neural net. 306 2359 9.15 10.49 8.84 und/und p-p/(78 vs 86) und/unde

Transcription net. 688 1079 1.32 0.36 0.88 undet/over p-np/(0.4 vs 0.3) over/over

aUnderlooped (und), overlooped (over), undetermined (undet), not determined numerically ( � � � ).
bFrom left to right: predicted and actual values determined by averaging over the directed loops up to length Lc � 6 (Lc � 3 for the
ND WWW).
cFrom left to right: predicted percolating (p) or nonpercolating (np) LSCC in real and random networks together with the actual
percentage of nodes in the LSCC of the real vs random networks.
dFrom left to right: prediction for long loops obtained using the BP algorithm [20] to estimate Lmax and the actual result obtained using
exhaustive ...
eor partial enumeration of the loops.
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