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Combining colloidal-probe experiments and computer simulations, we analyze the solvation forces F
of charged silica colloids confined in films of various thicknesses h. We show that the oscillations
characterizing F�h�, for sufficiently large h, are determined by the dominant wavelength of the bulk radial
distribution function. As a consequence, both quantities display the same power-law density dependence.
This is the first direct evidence, in a system treatable both by experiment and by simulation, that the
structural wavelength in bulk and confinement coincide, in agreement with predictions from density
functional theory. Moreover, theoretical and experimental data are in excellent quantitative agreement.
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One of the most prominent effects of confining surfaces
on the behavior of an adjacent fluid consists in the layer
formation of the particles, indicating that the translational
symmetry of the bulk fluid is broken in at least one spatial
direction (slit-pore geometry) [1,2]. Layering can induce
freezing transitions [3,4], it can support orientational or-
dering [5], and it affects the flow behavior and dissipation
of fluids in nanopores [6,7]. An additional effect attracting
increasing interest occurs when the confined fluid acts as a
solvent (‘‘depletation agent’’) of large colloidal particles:
Here, layering of the solvent particles induces oscillations
in the resulting depletion interactions [8] and in the closely
related solvation forces [9] between two planar surfaces.
Understanding these interactions and the behavior of the
underlying confined solvent is essential in colloid science
(e.g., to ensure stability against flocculation, and to control
colloidal crystallization for optical devices), in biological
contexts (e.g., protein crystallization, stacking of red blood
cells), and, generally, for the design of novel materials and
devices for micro- and nanofluidics. Indeed, there exist
now several techniques allowing precise measurements of
colloidal interactions such as the surface force apparatus
[9], total internal reflection microscopy [8], optical tweez-
ers [10], thin film pressure balance [11,12], and the
colloidal-probe (CP) technique [13]. It turns out that oscil-
lations in the effective interactions are a rather generic
feature except at very low solvent concentration. How-
ever, a precise understanding of the characteristics, that is
the period(s) and decay length of the oscillations in relation
to corresponding bulk properties of the solvent, is still
missing [14,15].

On the other hand, density functional theory (DFT) for
inhomogeneous liquids [16,17] clearly demonstrates that
some structural features persist when the bulk fluid is
squeezed from three towards two dimensions. More pre-
cisely, the density profile in the inhomogeneous fluid, ��r�,
which is the prime indicator of layering effects, decays
asymptotically with the same decay length and [for density

beyond the so-called Fisher-Widom (FW) line [18,19] ] the
same oscillatory wavelength as does the bulk radial distri-
bution function, gb�r�, at the same chemical potential and
temperature. According to DFT, these features of ��r� also
determine the asymptotic behavior of depletion and solva-
tion forces [20,21].

In the present Letter we investigate, combining experi-
mental and theoretical techniques, the validity of the DFT
predictions in a real colloidal fluid, focusing on the domi-
nant wavelength in bulk and confinement. Our model
system is a colloidal suspension of charged silica nano-
particles (LUDOX TMA-34) with a diameter � � 26�
2 nm [as determined by Cryo-TEM, atomic force micro-
scope (AFM) and small-angle neutron scattering (SANS)]
and a charge Z � 35 determined by electrophoretic mobil-
ity measurements. Using the CP-AFM technique [13], we
measure the force between a large silica sphere (radius
R � 3:35 �m) immersed into the colloidal solution and an
adjacent flat substrate (silicon wafer). The spring constant
of the AFM cantilever is 0:03 N=m. Since R� �=2 the
two surfaces can be considered planar [22], yielding a
slitlike geometry characterized solely by the film thickness
h (Derjaguin limit). The normalized force F=2�R then
becomes a function of h alone.

Theoretically, we model the suspension on an effective
level via the electrostatic part of the Derjaguin-Landau-
Verwey-Overbeek (DLVO) potential [23] involving only
the negatively charged silica macroions. The resulting
interaction reads u�r� � ~Z2e2

0 exp���r�=4��0�r where
e0 is the elementary charge, �0 and � are the permeability
of vacuum and the solvent dielectric constant, respectively,
and ~Z � Z exp���=2�=�1� ��=2� is an effective valency
involving the inverse Debye screening length � �
�e2

0=�0�kBT�
1=2�Z�� 2INA�

1=2 (with � being the particle
number density). The ionic strength of the added salt is set
to I � 10�5 mol=l corresponding to the experimental sys-
tem. In addition to the DLVO potential, the particles inter-
act (for numerical reasons) via a soft-sphere repulsion,
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which strength, however, is negligible against the DLVO
repulsion (of about 50kBT) at typical interparticle dis-
tances. Also, we have checked that attractive
van der Waals interactions do not influence the quantities
considered. Indeed, the resulting model correctly describes
(as compared to experiment) [24] structural features not
only in the bulk but, more interestingly, also in slitlike
confinement. The latter is modeled by two plane parallel,
smooth, uncharged surfaces separated by a distance h
along the z direction and of infinite extent in the x-y plane.
The fluid-wall potential ufw�z� is chosen to be purely
repulsive and decays as z�9. This simple choice is moti-
vated by the fact that, according to DFT arguments [17],
the precise shape of ufw�z� should influence only the fluid’s
behavior close to the wall but not the asymptotic decay of
��z� and related quantities.

To study the bulk structure of our model, we have
numerically solved integral equations for gb�r� consisting
of the exact Ornstein-Zernike equation combined with the
approximate hypernetted chain (HNC) closure [25]. The
latter is known to yield reliable results for Yukawa-like
interactions with not too high interaction strengths [26]. As
a test we have additionally performed canonical
Monte Carlo (MC) simulations. Within the HNC, the
dominant wavelength and decay length of the function
hb�r� � gb�r� � 1 [with hb�r� being the total correlation
function] can be determined via an analysis of the (com-
plex) poles q � �q1 � iq0 of the function 1� �~cb�q� �
�Sb�q��

�1, with Sb�q� � 1� �~hb�q� being the structure
factor [16]. It follows that rhb�r� � �2��

�1P
nRn	

exp�iqnr� where Rn is the residuum of q~h�q� related to
pole qn. The pole with the smallest imaginary part deter-
mines the slowest exponential decay and thus the asymp-
totic behavior of hb�r�, i.e., rhb�r� ! Ab exp��q0r� 	
cos�q1r� �b�, r! 1, with q0 playing the role of an
inverse correlation length (i.e., q0 � ��1) and q1 �
2�=	b determines the wavelength 	b of the oscillations
(at the state points considered all poles have both a real and
an imaginary part, in agreement with earlier findings for
Yukawa-like systems [26]). In addition, we have deter-
mined q0 and q1 from MC data by plotting the function
ln�rjhb�r�j�. Wavelength and correlation length then follow
from the oscillations and the slope of the straight line
connecting the maxima at large r. Our HNC and MC
results for 	b as a function of the volume fraction 
 �
���3=6 are given in the main part of Fig. 1, showing that
the two approaches are in good agreement. This is consis-
tent with the observations reported in [26] and justifies the
use of HNC in the bulk system. Also, more importantly, 	b
strongly depends on the density and can thus be very
different from the particle diameter, � � 26 nm. More
precisely, our theoretical data can be fitted according to
the power law 	b � a
�b with bMC � 0:36, bHNC � 0:39.

From the experimental side, it is difficult to determine
directly the quantity 	b related to the real-space distribu-

tion function hb�r� � gb�r� � 1. Instead, we have mea-
sured (using SANS) the position of the main peak of
S�q� [24], qmax, which may be related to a wavelength
	s � 2�=qmax. Experimental details are given in [24].
The structure factor S�q� is the Fourier transform of the
full function hb�r� involving all poles. Thus, 	s may be
considered as a wavelength averaged over all particle
separations, which does not need to coincide with 	b.
The latter determines the asymptotic behavior via the
leading pole. Still, one expects these two wavelengths to
be very close to each other. This is confirmed by our HNC
results for 	s, which conform well with the MC/HNC data
for 	b and also with the experimental data for 	s [24] (see
Fig. 1). Thus, we consider the experimental data for 	s as
an approximation of the true wavelength 	b characterizing
gb�r� in the real (bulk) system.

We now investigate to which extent the bulk length 	b
persists in the presence of confinement. DFT [16,17] pre-
dicts that, for sufficiently large h allowing a bulklike region
in the middle of the pore, the microscopic density profile
should decay as ��z���b!A�exp��q0z�cos�q1z����,
where q0 and q1 are exactly the same as in the bulk system
at equal chemical potential (with bulk density �b), whereas
the amplitude A� and phase �� depend on the nature of
fluid-wall interactions. The same asymptotic behavior is
expected for the so-called normal (solvation) pressure,
f�h� � Pzz�h� � Pbulk, integration of which then gives
F�h� (assuming validity of the Derjaguin approximation
[22]).

To test these predictions within our DLVO model, we
have calculated, for various packing fractions, the function
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FIG. 1. Dominant wavelength 	b characterizing hb�r� �
gb�r� � 1 as a function of the volume fraction according to
HNC (solid line) and MC (diamonds). Also shown are the
HNC data for 	s (dashed line) and the corresponding SANS
data (filled circles, with error bars). The inset shows two MC
results for the function ln�rjhb�r�j� (circles). The asymptotic fit
functions are plotted as dashed lines.
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f�h� via grand canonical (GC) MC simulations; see Fig. 2
for two representative examples. In the whole density
range considered the oscillatory asymptotic decay of our
f�h� (determined by a wavelength 	f), is indeed very well
described by the leading bulk wavelength (and correlation
length), implying 	f � 	b. This is particularly clearly
demonstrated by the logarithmic representation in the inset
of Fig. 2. Thus, our GCMC simulation results for the
charged silica particles confirm the DFT predictions.
Moreover, the asymptotic expression is found to provide
a good approximation of the oscillations already at remark-
ably small wall separations. Indeed, the full curve is well
described by the asymptotic formula already after the first
minimum at h � hmin, combined with a cubic polynomial
fit for h 
 hmin. Then, having found an accurate fit formula
for f�h�, one may immediately integrate [20] to obtain the
solvation force F�h�=2�R, results for which are included
in Fig. 2.

Experimental results for F�h� from CP-AFM measure-
ments are shown in Fig. 3. For all but the highest concen-
tration considered, the data may well be fitted by an
exponentially damped oscillation with wavelength 	f.
Moreover, the data clearly show that 	f decreases and
the oscillations become more pronounced with increasing
particle concentration (the corresponding behavior of the
decay length is less clear due to significant statistical
errors). At the highest concentration one observes a devia-
tion from the fit function for very small wall separations (of
about 1�–2�), indicating a different spatial distribution in
ultrathin films. We also note that, irrespective of the con-
centration considered, the amplitudes and phases charac-

terizing the experimental data are different from those of
the theoretical functions F�h� illustrated in Fig. 2. This is
expected in view of the simplified fluid-wall potential
ufw�z� used in the theoretical calculations. In the present
Letter we rather focus on the wavelength 	f of the oscil-
lations, which should be independent of ufw [17].

Our experimental results for 	f as a function of the
particle volume fraction are plotted in Fig. 4. Also shown
are the theoretical (MC) data for 	f (which, as demon-
strated in Fig. 2, equals the bulk wavelength 	b plotted in
Fig. 1), and the experimental (SANS) data for the bulk
wavelength 	s deduced from the structure factor. Clearly,
there is very good agreement between the experimental
data for 	f and 	s. Therefore, and since we may consider
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FIG. 3. Experimental curves for F�h� obtained by CP-AFM for
three different particle concentrations (the data have been verti-
cally offset for ease of viewing). The curves are fitted according
to the formula F=2�R � A exp��h=�f� cos�2�h=	f � �f� �
offset.
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FIG. 4. Comparison of the various wavelengths from theory
and experiment in bulk and confinement. Not included are the
theoretical results for 	s since these are very similar to the SANS
data (see Fig. 1). The inset shows the same data on a logarithmic
scale.
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FIG. 2. Two examples of the solvation pressure f�h� as ob-
tained by GCMC (filled circles) together with the asymptotic fits
(solid line) obtained with the bulk values of q1 � 2�=	b and q0.
Included are the resulting structural forces F�h�=2�R (dashed
line). The inset shows a logarithmic plot of f�h�.
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	s (i.e., the average bulk wavelength) as a very accurate
approximation for the wavelength 	b determining the
asymptotic oscillations in gb�r�, our experimental results
are completely consistent with DFT predicting 	f � 	b.
Moreover, we see from Fig. 4 that there is excellent agree-
ment between experimental and theoretical data for 	f.
This is a strong (yet indirect) evidence that the actual shape
of the fluid-wall interactions (which is too simplified in our
theoretical model) is irrelevant for the asymptotic decay of
surface forces, which conforms with the DFT predictions.
The very similar behavior of the wavelengths 	f and 	s
is also reflected by the close values of the exponents b
governing their power-law density dependence (i.e., 	 �
a
�b). Indeed, we find for 	s that bs � 0:27 (0.30) from
experiment (theory), while for 	f, bf � 0:35 (0.36). We
understand the somewhat lower values of bs as a conse-
quence of the averaged character of 	s, which results in a
somewhat weaker density dependence (as compared to that
of 	f).

To summarize, we have shown by experiment and theory
that the dominating wavelengths of the oscillations in
characteristic distribution functions of bulk and confined
charged silica solutions are in excellent agreement with
each other. This is the first experimental proof of corre-
sponding DFT predictions. Moreover, our experimental
results are reproduced very well by theoretical calculations
based on the DLVO interaction potential. Strictly speaking,
the latter is an effective potential derived for bulk systems
with spherical counterion distribution. Clearly, this will
change in a nanoscopic system where many particles are
close to an interface (where image charge effects may also
play a role) [27,28]. From that point of view, the good
performance of our calculations indicates that the
confinement-induced changes of the effective silica inter-
actions are irrelevant for the quantities considered.

Of course, the wavelength 	f considered in this Letter is
associated with the density distribution perpendicular to
the walls, and we have seen that this wavelength strongly
depends on the particle volume fraction (
). Clearly, one
would also expect an increase of lateral order with 
,
including the possibility of wall-induced crystallization.
Hints for such behavior were already observed in x-ray
experiments [29] and also in the present study via a devia-
tion of the measured force F�h� from simple oscillatory
behavior in ultrathin films. More detailed studies on this
topic are under way.

Finally, the results presented in this study are relevant
not only for the specific silica suspension considered here,
but we rather expect our findings to be transferable to the
packing (and fluidics) of other confined nano-objects from
colloidal particles via micelles and macromolecules to
biological entities, e.g., cells.
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