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Free-Energy Fluctuations and Chaos in the Sherrington-Kirkpatrick Model

T. Aspelmeier

Max Planck Institute for Dynamics and Self-Organization, 37073 Gottingen, Germany
(Received 20 December 2007; published 20 March 2008)

The sample-to-sample fluctuations AFy of the free-energy in the Sherrington-Kirkpatrick model are
shown rigorously to be related to bond chaos. Via this connection, the fluctuations become analytically
accessible by replica methods. The replica calculation for bond chaos shows that the exponent w
governing the growth of the fluctuations with system size N, AFy ~ N*, is bounded by u = 1.
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The sample-to-sample fluctuations of the free-energy in
the mean-field Ising spin glass [1] are a long standing
unsolved problem in spin glass physics. In addition to their
intrinsic interest as a finite-size effect in spin glasses, they
are of fundamental importance for the physics of finite-
dimensional spin glasses. It has been shown [2] that the
finite-size scaling of the free-energy fluctuations AFy in
the mean-field spin glass is equal to the scaling of the
domain wall energy AFpw in finite dimensions d = 6,
i.e. N* o« AFy « AFpy « LY, where N is the total system
size and L its linear dimension (in the case of a finite-
dimensional system). This implies the relationship § = du
between the domain wall exponent # and the fluctuation
exponent .

Chaos is also a very important aspect of spin glasses.
Chaos refers to the property that an infinitesimal change of,
for instance, the temperature or the bond strengths results
in a complete change of the equilibrium state. Chaos was
first suggested for hierarchical models and in the context of
the droplet picture and finite-dimensional spin glasses [3,4]
but has also been studied in mean-field models [5-7].

In this paper we derive a new and exact connection
between the free-energy fluctuations and the seemingly
unrelated phenomenon of chaos. Such a connection has
been suggested by Bouchaud e al. [8] as part of a heuristic
argument to obtain the free-energy fluctuations. Our results
partly corroborate the argument but we will see that a
crucial ingredient seems to be missing from it. In addition
to making the heuristic argument precise, our results pro-
vide a new way to access the fluctuations analytically. The
fluctuations are a subextensive quantity such that their
calculation usually requires higher order terms in the
loop expansion. These are, however, inaccessible due to
the massless modes present throughout the spin glass
phase. Here we will show that it is sufficient to calculate
chaos to zero-loop order to obtain the fluctuations. We
demonstrate this explicitly above and at the critical tem-
perature but believe and present evidence that it also works
in the low temperature phase.

The method we use to derive the connection between
fluctuations and chaos is a variation of the interpolating
Hamiltonian method, inspired by the work of Billoire [9]
where a similar method was introduced to study the finite-
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size corrections to the free energy numerically. In this
Letter, we will set up a general formalism which will be
amenable to an analytical treatment and derive the upper
bound p = i. The details of the calculation will be pub-
lished elsewhere [10].

Numerically, the sample-to-sample fluctuations in the
mean-field model have been investigated extensively in the
literature [2,11-15]. In all of these cases the study was
restricted to zero temperature. The fluctuation exponent
appears to be u = 0.25, although other values of w can not
entirely be ruled out. However, u = ‘—1‘ would violate the
relation @ = du since the numerical results for 6 in high
dimensions by Boettcher [16,17] give for instance 6 =
1.1 = 0.1 for d=6 while du = 1.5 for u =0.25. It is not
entirely clear whether the exponent u is the same at 7 = 0
and at finite temperature. While it most likely is identical,
this is very hard to check since it is difficult to calculate u
numerically at any finite temperature. With the connection
to chaos, however, it will be possible in the future to
calculate w at finite temperature by simulating chaos.

Other values than 0.25 for u have been put forward in
the literature. Crisanti et al. [18] found, using a result at
zero-loop order by Kondor [19], that u = %. The argument
is, however, not entirely rigorous. Nevertheless, it has
recently been argued by a combination of heuristic argu-
ments and extensive numerical simulations at finite tem-
perature that u =% is indeed correct [20]. The bound
m= i derived here is compatible with this but, unfortu-
nately, does not rule out pu = %.

Analytically, the free-energy fluctuations of any disor-
dered system can in principle be found with the replica
method. Given the partition function Z of a system of size
N, a Taylor expansion of logZ" in powers of n yields
logZ" = —nBFy + ”—;AFIZV + .-+, where the overbar
means the average over the disorder, 8 = 1/kgT is the
inverse temperature and F is the average free energy at
system size N. The dots indicate higher order cumulants.
Using the standard replica formalism [21], one can calcu-
late Z" for integer n and try to continue the resulting
expression to real n and isolate the coefficient of the
second order term which represents the fluctuations. It is
easy to show that in the high temperature phase (8 < 1),
where the saddle point is replica symmetric and its Hessian
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has only strictly positive eigenvalues, the fluctuations are

1 ) Bz
10g(1 - B -5 +O001/N) (1)

[18,22]. A straightforward extension of the calculation in

[22] shows that the fluctuations at the critical point are

B*AFy =

BAF?, = é logN + O(1). )

Note that Eq. (1) is a one-loop result. Equation (2) even
requires reorganization of the perturbation series [22]. We
will see below that we can obtain precisely the same results
from a zero-loop order calculation of bond chaos.

Interpolating Hamiltonians.—In order to derive the con-
nection between the fluctuations and chaos, we introduce
the following interpolating Hamiltonians:

ZJ”S s;— \/' J(r)s s;i (3
l<

i<j J

Y = -

with N Ising spins s;,,0 = ¢t =1,r = 1,2 and J,J, Jl(;), J(z)
independent Gaussian random variables with unit variance.
The parameter ¢ interpolates between one spin glass system
(t = 0) and a statistically independent, but otherwise iden-
tical one at ¢+ = 1. It is important to note that also for each

other value of ¢ the Hamiltonians describe a normal spin
|

glass, the coupling constants being 1 — 1J;; + \/EJS;)
which are Gaussian random variables of unit variance.

The partition functions of these Hamiltonians are zﬁ’) =
Trexp(—BH, (’)) Denoting the average over all coupling
constants J;;, J(l) and J(z) by E,, it is straightforward to
show that

E;(logZ" — 10gZ{")? = 28*AF3, )
E,(logZ" — logZ")(logZ{? — logZ{?) = B*AF. (5)

This gives us two distinct representations of the fluctua-
tions. Using the idea from [23] to represent logZ(r)

long)r) by differentiating with respect to the interpolation
parameter and immediately integrating again, the fluctua-

tions can be written in two ways as

dlogZ"V 9logz!
BAF, :f dtf drE, = S ()
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In [10] it will be shown how to manipulate this expres-
sion in order to arrive at the following Eqs. (8) and (9),

91logZV 910gz N2,84

J a1 : a7 h(t, T)EJ<(‘]13 ‘]%4)(61%3_6133» 4\/—<EJ<QI3> > (8)
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with Az, 7) = 2 —
average and q,,(t, 7) =

at bt
N iSi S

N J_r W Note that these equations are exact. The angular brackets (- -

-} denote the thermal

are overlaps between independent replicas a, b with different interpolation parame-

ters. The expression involving four replicas is always nonnegative, as can be seen from the following representation,

<(CI13 414)(611% Q23)> N4 Z«sl tsjl IS 511't> - <S,Lts}’l><sit t>)(<53 7 ;Tsk s? T

ijkl

4,7 4, 3,7.3,
- <Si Tsj T><5k TS[ )

<(Z<s“ P st - <s?”s3’-’f>>)2> =0, (10)

The last important step is to employ the fact that for any
given value of ¢, H §’> represents a normal mean-field spin
glass with Gaussian couplings just like any other. Consider
Eq. (8). The overlap ¢q,;, between two replicas with differ-
ent interpolation parameters is nothing but the overlap
between two normal spin glasses with identical bonds (if
t = 1), uncorrelated bonds (if t = 0, 7 = 1 or vice versa)
or correlated bonds (for anything in between). Similarly,
for Eq. (9) the overlap is between systems with equal bonds
(t = 7 = 0), totally uncorrelated bonds (t = 1 or 7 = 1) or
correlated bonds (anything else). This shows the connec-
tion to bond chaos.

The overlaps in Egs. (8) and (9) thus do not depend on ¢
and 7 separately but only on a measure of “distance” €

r
between the two sets of bonds. We deﬁne € via the correla-

tion between the bonds, i.e., we set =F J(\/— tJij+
\[J“»))(\/EJ,] + 7)) = \/Fer Jir  for
Eq. (8) and Lo = E,(VT = tJ;; + Vi )WT = 7J;; +
JTIP) = \/— JT =7 for Eq. (9). With these defini-

tions, € = 0 means identical bonds and € = o0 means
totally uncorrelated bonds.

We can now make a change of variables under the
integrals in Eqgs. (6) and (7) and eliminate, say, 7 in fa-
vor of €. The remaining integral over ¢ can be carried
out analytically and we get the two different exact expres-
sions

117205-2



PRL 100, 117205 (2008)

PHYSICAL REVIEW LETTERS

week ending
21 MARCH 2008

gk ==Y [ e (@A - gtotah ~ )
B [ aeqiaExain ) (1)
M [ ders BNk - ey ~ )
N8 [ desa(e)Exiai) ) (12)
where
(o= 2elog(1+ €?) gn(e) = elog(1+ €?) (14)

(1+€)? ~

By going over from ¢ and 7 to € the distinction between the
different Hamiltonians in the two representations of the
fluctuations has disappeared and the overlaps as a function
of € in both of these equations are the same.

Note the minus sign in front of the first term in Eq. (11)
as opposed to the plus sign in Eq. (12). Since the function
f1(e) is nonnegative and ((¢3; — ¢3,)(¢3; — ¢3;)) = 0, the
first term is indeed a negative contribution. We conclude
that the second term in Eq. (11) is an upper bound for the
fluctuations.

Probability distribution of the overlap.—If we had the
disorder averaged probability distribution P.(g) to find the
overlap g between two replicas with bond distance €, we
could evaluate E;(g%;(€)). In order to evaluate E;{(g3; —
q3,)(q3; — q33)) we need the probability distribution
P'3(g13, g23) to simultaneously find ¢,3 and g3, as well
as the probability distribution P1**(q4, g»3) to find g4

and ¢,3. However, in this Letter we will focus on P.(g).
|

2

The probability distribution P_(g) can be calculated
approximately from large deviation statistics principles
by considering two replicas with bonds J ?j and J;;(€) which
are a bond distance e apart and constraining their overlap
to a given value of g. The partition function Z, ;(q) of this
combined system is

Zesla) =03 =S exp( B3 sy Jyehy) )

<
(15)

The variables s; and ¢; are the spin variables of the two
replicas. From this one gets the average free energy per
spin Bfe(q) = — L E;logZ, ,(q) and P.(q) is approxi-
mated by

e~ NBf @)

~ PO(g) =
Pe(‘]) Ps(‘]) ° j-(l) dqeiN'Bff(q)

(16)

Averages over P%(g) will be denoted by [- - -],.

A more precise discussion of the finite-size effects and
the relevance for “small’” deviations will be given in [10].
Here we will show that P%(g) is indeed the correct proba-
bility distribution to use by demonstrating that it yields the
exactly known results above and at the critical temperature
and by comparing predictions in the spin glass phase with
simulations from [7] (see below).

Replica calculation.—To the best of our knowledge,
bond chaos has never been calculated in the literature
and we will therefore present a brief sketch of our results
here. Since these replica calculations are fairly standard,
we refer the reader to the analogous calculation for tem-
perature chaos [5,6] for details. Repeating Rizzo’s calcu-
lation [5] for the constrained two-replica partition function
from Eq. (15) but for bond chaos rather than temperature
chaos, one arrives at the following truncated replica free
energy

w

2 4
B =aps =5 =0 v [Laif@ + o [apr@ g [Cadat@) - pt@] - [ deeg'@

2 6

3

- w f 1 dzzp*(2)q(z) — w f L dz f 1 dZ'[(¢*(z) + p*(2))q(z)) + 2p(2)q(2)p(z")] + 2wp, f 1 dzp(2)q(z). (17)
0 0 z 0

The parameters w and y are equal to 1 for the SK
model and 7= (8% —1)/(28%) is the distance from
the critical temperature 7, = 1/8, = 1. The only refer-
ence to the bond distance is contained in 7/ = (8% —
V1 + €%)/(28?). Three saddle point equations can be de-
rived from this free energy by differentiating with respect
to g(x), p(x) and p,;. The function g(x) is the Parisi
function for the overlap of the first replica with itself (the
same function applies by symmetry to the overlap of the
second replica with itself). The function p(x) describes the
overlap between replicas one and two. The parameter p,
stems from the diagonal of the overlap matrix between

{
replicas one and two and is a conjugate variable to the
forced overlap gq.

Solving the saddle point equations is nontrivial and only
possible in certain limiting cases. Deferring the details to
[10], we summarize the results here. Above the critical

2 2
temperature we find Bf(q) =% (1 - \/1ﬁ+—52) + O(g*).

With this we can calculate P%(g) according to Eq. (16).
Above the critical temperature, there is no replica symme-
try breaking and the distributions P1*(g,s, ¢»3) and
P?%(g1s, q4) factorize into a product of P%(q)’s. The
expression E;{(g%; — ¢3,)(¢3; — ¢3;)) can thus be written
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as [¢*]y — [¢*]3. The integrals in Eq. (12) can then be
evaluated exactly giving precisely the result from Eq. (1).

Exactly at the critical temperature there is still no replica
symmetry breaking and the factorization of P1?* and P1?3*
applies as above. We obtain P%(g) ~ e N"4'/6 for e <
N~1/6 and PY(g) ~ e N’€'/4 for N~1/6 <« € < 1. These
limiting cases are enough to calculate the leading behavior
of the integrals in Eq. (12) and we get the same as in
Eq. (2).

Below the critical temperature, replica symmetry break-
ing does apply and we can not factorize P!> and P1>*.
Although it has been shown in [24,25] how to break down
these probability distributions, the results only apply for
€ = 0. We therefore concentrate on the second integral in
Eq. (11) which is an upper bound for the fluctuations. We
find four regimes,

1 e< N 1/2
—Nc g’ €? -1/2 —1/5
0 e 1 N K exXN
Pe(q) e N’ N-1/5 « e « 1 ’ (19
e NEf©)  otherwise

where c¢;, are constants and f(e) is an (unimportant)
function. Using these results we can calculate the leading
behavior of [ deg,(€)E 7{g%;) and obtain for the domi-
nant contribution to the integral

NB2 (N N3/10
YT desi(elal =N [T dnF @ ~ N1
(19)

where x = e+/N is a scaling variable and F(x) is a scaling
function with the properties F(x) — const (x — 0) and
F(x) ~ x4 (x — o). This behavior of F(x) is perfectly
consistent with the numerical results for [¢], presented in
[7]. This is strong evidence that the finite-size corrections
are indeed irrelevant even in the low temperature phase.
(Note x' = Né€ is used as a scaling variable in [7] and the
scaling of [q¢], is investigated instead of [¢?], as we do
here. This is, however, only a trivial difference.)

Since Eq. (19) is an upper bound for the fluctuations, it
follows that u = 1.

Discussion.—We have shown that there exists a deep
and exact relation between the free-energy fluctuations and
chaos in spin glasses, Eqgs. (11) and (12). A similar con-
nection has been suggested by Bouchaud et al. in a heu-
ristic argument [8]. Briefly, the argument runs as follows.
When the bonds are changed randomly by an amount of
order 1/+/N, the ground state of the system changes and we
get a new ground state energy. In order to obtain a truly
independent new bond configuration, we must change the
bonds by an amount of order 1; i.e., we obtain a sequence
of ~+/N level crossings. Each of these contributes a ran-
dom amount of order 1 to the change in ground state energy
such that the final energy differs by an amount of order
N'/4 from the original ground state energy, i.e. u = 1.

This argument corresponds precisely to the second term
in Eq. (11). From Eq. (18) we see that the overlap does not
change appreciably until € = N~'/2 (corresponding to the
statement that the ground state does not change up to that
value of €), and the leading contribution to the fluctuations
comes from tuning € from 0 to O(1) and is proportional to
N'/4_ There is, however, the negative first term in Eq. (11)
which has no correspondence in the heuristic argument and
which reduces the size of the fluctuations and might de-
crease u. We are currently unable to provide an intuitive
explanation for this term. We note, however, that it is cru-
cial and cannot be ignored since in our second formulation,
Eq. (12), the integral containing the four replica overlaps is
the dominant term and is solely responsible for .
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