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We suggest to use ‘‘fluctuation spectroscopy‘‘ as a method to detect granularity in a disordered metal
close to a superconducting transition. We show that with lowering temperature T the resistance R�T� of a
system of relatively large grains initially grows due to the fluctuation suppression of the one-electron
tunneling but decreases with further lowering T due to the coherent charge transfer of the fluctuation
Cooper pairs. Under certain conditions, such a maximum in R�T� turns out to be sensitive to weak
magnetic fields due to a novel Maki-Thompson-type mechanism.
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Since seminal experiments on the superconducting-
insulator transition in granular samples [1], transport prop-
erties of granular metal have enjoyed extensive attention;
see [2,3] for reviews and references. Granularity offers
systems with tunable parameters eminently suitable for
studies of the interplay between electron correlations and
mesoscopic effects of disorder. Generically, effects of
granularity are most profound at T * � (� is the electron
tunneling rate between the grains). At low temperatures
(T & �) the transport properties of the granular metal
coincide with those of the amorphous one [4] including
rather subtle effects of weak localization [5,6]. The role of
granularity is widely believed to be crucial for the metal-
insulator and superconductor-insulator transitions. It was
recently discovered [7,8] that it may be of a self-induced
nature and appear even in homogeneously disordered
samples. This poses an interesting question of whether it
is possible to find a reliable experimental benchmark of
granularity in electronic transport in the metallic regime.

In this Letter we show that there exists a firm experi-
mental signature of granularity—the appearance of a
maximum in the temperature dependence of the resistance
R�T�, provided that a granular system is made of material
that experiences the superconducting transition. The mag-
nitude and position of such a maximum might be very
sensitive to a weak magnetic field. The maximum is due
to an interplay of different types of superconducting fluc-
tuation contributions, specific for granular systems, at tem-
peratures T * Tc (the transition temperature). All this is
strikingly different from a monotonic decrease with T of
the fluctuation resistance of amorphous systems close to Tc
and allows one to extract various characteristics of the
granularity, thus suggesting a method of characterization
of disordered systems that can be termed as the fluctuation
spectroscopy.

The disordered system becomes effectively granu-
lar for one-electron transport provided that the tunnel-
ing conductance between inhomogeneities (grains),
gT � �=�, is much smaller than the intragranular conduc-

tance g� ETh=�—in the opposite case, the system is
indistinguishable from the amorphous one. Furthermore,
the granular character is preserved also for the charge
transfer by fluctuation Cooper pairs when their Ginzburg-
Landau lifetime, �GL � �T � Tc��1 is much shorter than
the escape time ��1 (we use units with @ � kB � 1).
Finally, the system remains metallic when gT � 1. The
above conditions can be satisfied when

 � & � & ETh; Tc: (1)

Here � is the mean level spacing in the grain, ETh �D=d2

is its Thouless energy, d is the typical grain size, and D is
the intragrain diffusion coefficient [9]. We will focus on
the case ETh & Tc where the Cooper pair intragrain mo-
tion can have both the three-dimensional (3D) and zero-
dimensional (0D) character.

The characteristic feature of the fluctuation pairing in
the problem is the appearance of two different scales for
the superconducting coherence length, �g � �D=Tc�1=2

and �T � ��d2=Tc�1=2, driven by the intragrain and inter-
grain pairing, respectively. The above inequalities corre-
spond to the length scales ranging as �T & �g & d.

The existence of the two correlation scales becomes
crucial in the vicinity of Tc where the superconducting
fluctuations are governed by the temperature-dependent
Ginzburg-Landau correlation length ����:

 �g��� �
�g���
�
p ; �T��� �

�T���
�
p ; � �

T � Tc

Tc
:

This leads to the existence of three distinct temperature
regimes near Tc (see Fig. 1):

 �g & � & 1; �3D� (2)

 �T & � & �g; �0D� (3)

 � & �T; �3D� (4)

where �T � �=Tc and �g � ETh=Tc. For the first two
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regimes, it is the intragrain correlations that govern the
fluctuation corrections to the conductance, these correla-
tions having a 3D character in region (2), albeit very
different from that in the amorphous metal, and a 0D
character in region (3). For smaller grains, when ETh *

Tc, region (2) vanishes, which does not change the quali-
tative picture. In the immediate vicinity of Tc, regime (4),
the intergrain fluctuation pairing dominates. In this case,
the fluctuation corrections are equivalent to those in amor-
phous disordered media with the effective diffusion coef-
ficient DT � �d2. It is the existence of the regimes (2) and
(3) that imprints a pronounced signature of the granularity
as we now demonstrate.

The model under consideration is defined by the stan-
dard Hamiltonian,

 Ĥ � Ĥ0 � ĤT;

where Ĥ0 describes electrons in a single grain in the
presence of the BCS pairing (characterized by the transi-
tion temperature Tc) and disorder (characterized by the
intragrain diffusion coefficient D), while ĤT describes
the intergrain tunneling with the amplitude t, which is
assumed to be local (i.e., momentum independent) and
the same for all the grain pairs. For simplicity, the grains
are assumed to have a spherical shape of diameter d [10].

The tunneling current between the neighboring grains
can be expressed as follows [11]:

 I�V� � �eImKR�!�j!��ieV;

where KR�!� is the analytical continuation, i!� ! !, to
the upper half-plane of the current-current correlation
function in the Matsubara frequencies

 K �!�� � Tjtj2
X
"n

X
p;p0

GL�p; "n �!��GR�p
0; "n�: (5)

Here GL;R are the exact electron Green’s functions in the
neighboring (‘‘left’’ and ‘‘right’’) grains with "n �
�T�2n� 1� and !m � 2�Tm being the fermionic and
bosonic Matsubara frequencies. Hence the conductivity

 �T �
1

d
dI
dV
�
e2

d
Im
dKR�!�
d!

��������!!0
;

where V is the voltage drop at the grain.
Examples of diagrams describing significant fluctuation

contributions to K�!m� are presented in Fig. 2. The solid
lines correspond to the disorder-averaged electron Green’s
functions, the circled crosses represent the tunneling am-
plitude t, and the wavy lines correspond to the fluctuation
propagator, L�qk;�n�. For a single superconducting grain
L is found by solving the linearized Ginzburg-Landau
equation with the boundary condition corresponding to
the zero current flow at the grain surface. It has the standard
form [12] at �	 1 but with quantized momenta qk. In
what follows we will need the analytic continuation of this
propagator to the upper half-plane given by

 LR�qk;�� � �
1

�
1

�� i��=8Tc � �
2
gq

2
k

: (6)

Here �� 1=d3� is the density of states (DOS), and the
quantized momenta are defined by qkd � 2 tan�qkd=2�,
which gives q0 � 0 and qkd 
 2�k� � for k � 1.
Finally, the shaded triangles in Fig. 2 are the Cooperons
describing the usual ‘‘dressing‘‘ of the fluctuation propa-
gator due to the coherent electron scattering from impuri-
ties,

 ��qk; "1; "2� �
��1

j"1 � "2j �Dq2
k

: (7)

Let us first consider the immediate vicinity of Tc, region
(4) where the intergrain coherence length �T��� exceeds
the grain size. Then the granularity is practically irrelevant
and the system behaves as the effective amorphous metal
with the diffusion coefficient DT . In this region the fluc-
tuation correction � is dominated by the Aslamazov-
Larkin (AL) diagram, Fig. 2(c), and increases in accor-
dance with the standard 3D result [12]:

 ��eff�
AL ��� �

e2

�T

1���
�
p : (8)

On the contrary, in regions (2) and (3) the granularity is
paramount. We will show that this may result in the ap-
pearance of a maximum in the temperature dependence of
resistance. We start our consideration for this region with

FIG. 2. Fluctuation corrections to the tunneling current in the
lowest orders in transparency and fluctuations.

FIG. 1. Temperature dependence of the Ginzburg-Landau
superconducting coherence length above Tc: at � � �T it jumps
from the intra- to intergranular regime.
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the first-order fluctuation contribution to �, Eq. (5), corre-
sponding to the DOS fluctuating separately in each of the
grains [two such contributions are shown in Figs. 2(a) and
2(b)]. At �	 1 the fluctuation propagator, Eq. (6), should
be taken at � � 0. Integrating over the electron momenta
and summing over the fermionic frequencies, one finds the
following negative contribution:

 �DoS��� � �
e2

d
�T
X
k

1

�� �2
gq2

k

: (9)

In region (2), i.e., for the intragranular 3D motion, the
summation in Eq. (11) is reduced to integration, while in
the 0D region (3) only the q0 � 0 term in Eq. (9) contrib-
utes, which gives

 �DoS��� � �
e2

d
�T �

8>>><
>>>:

1��������
�g�
p ; �g & � & 1

1

�
; �T & � & �g

: (10)

The AL contribution to the correlation function of
Eq. (5), Fig. 2(c) [13], is of the second order in �T �
�=Tc, but it is more singular in 1=� than the first-order
DOS one above. It is given by

 K AL�!�� � T
X
�n

X
k;l

jBklj2L�qk;�n �!��L�ql;�n�:

Here Bkl denotes the loop made of four Green’s functions
[Fig. 2(c)] with the Cooperon dressing (7). The standard
calculation [12] gives Bkl � ��T . Now one transforms the
sum over �n into a contour integral in the usual way,
making appropriate cuts in the complex plane of the fre-
quency z and thus constructing the analytical continuation
i!� ! !� i0, which yields in the limit !! 0 the fol-
lowing expression for the AL contribution into the fluctua-
tion conductivity:
 

�AL��� �
e2

d
�2
T

Z 1
�1

d	
�X
k

1

��� �2
gq2

k�
2 � 	2

�
2

�
e2

d
�2
T �

8>>>><
>>>>:

1

�g�2; �g & � & 1

1

�3; �T & � & �g

: (11)

Two types of the Maki-Thompson (MT) contribution are
represented by diagrams in Figs. 2(d) and 2(e). On the face
of it, Fig. 2(d) is just a second order contribution from the
DOS fluctuations. But this is not so. The phase coherence
of the fluctuation propagators in two grains is absolutely
essential here so that one may classify this diagram as
belonging to the Maki-Thompson type. Its leading contri-
bution describes the interference between the DOS fluctu-
ations in the neighboring grains while only the subleading
one contributes to the second order DOS corrections.
Technically, it results from the summation over the anoma-
lous interval where the fermionic frequencies in the

Cooperons [shaded triangles, each given by Eq. (7)] are
of the opposite sign. This results in the appearance, along
with the two fluctuation propagators, of an additional
strongly singular factor, cut off by the intragrain dephasing
rate 
� � 1=�Tc���:
 

�MT �
e2

d
�2
T

gT

X
k;l

1

�� �2
gq2

k

1

�� �2
gq2

l

�
1


2
’ � �
2
gq

2
k � �

2
gq

2
l �

3 :

Although this contribution is of the first order in �, its
overall factor �2

T=gT is smaller than that in the AL con-
tribution, which is of the second order in �. The extra
factor 1=gT � �=� is due to the reduction of the effective
phase volume in the former contribution, which contains
less independent integrations over fast electronic mo-
menta. A straightforward estimation of the above summa-
tion gives

 �MT��� �
e2

d
�2
T

gT
3
’
�

8>>>>>>><
>>>>>>>:


’
�g�2; �g & 
’ & � & 1

1

�g�
; �g & � & 
’ & 1

1

�2; �T & minf�; 
�g & �g

:

(12)

The magnitude of this contribution differs from the AL
one, Eq. (11), by the factor gT
3

�, which may be either
small or large. The dephasing rate 
� is the sum of the
escape rate, 
esc

� � �=Tc � �T , and the dephasing rate due
to the electron-electron interaction, 
ee� � �T=�gT�

�
g � with

� � 3=2 in region (2) and � � 2 in region (3) [14].
The contribution of Fig. 2(e), which is a modification of

the standard MT diagram for the present case, is smaller by
the factor �T than the expression in Eq. (12).

Let us discuss the results obtained. On the face of it,
Eq. (11) contradicts the well-known results for the con-
ductivity [12], ��D�AL � �

�D=2��2, which are supposed to be
applicable to any dimensionality D. This apparent discrep-
ancy is due to the tunneling character of the fluctuation
Cooper pair motion between grains. The Cooper pair tun-
neling at T > Tc requires two independent electron hops,
the probability of each being proportional to the tunneling
rate �. To preserve the superconducting coherence, both
should occur within the Cooper pair lifetime �GL � 1=�Tc.
Thus the probability W of the pair tunneling between two
grains W � �2�GL / 1=� acts as the correction factor to
the expected 0D expression / ��2, which leads us to the
result (11). In the same spirit one can obtain qualitatively
the 3D asymptotic of Eq. (11), valid when �g 	 d. The
fluctuation conductivity in such a 3D grain is the standard
��3�AL � �

�1=2. Then the probability W above is reduced due
to the fact that only the pairs in the skin layer of thickness
�g��� near the grain boundary can tunnel, their fraction in
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the grain being �g���=d. This immediately leads to the
appropriate asymptotics of Eq. (11).

Finally, let us discuss the temperature dependence of the
fluctuation contribution to the conductivity given by the
sum of Eqs. (10)–(12). For 
3

�gT � 1, it is determined by
the competition of the negative �DOS and positive �AL. At
the onset of the fluctuation region, � & 1, the former
dominates since it is proportional to the lowest power of
the small tunneling parameter �T resulting in the initial
increase of the resistance with a decrease of � � T=Tc � 1.
With a further decrease of �, the AL contribution, more
singular in ��1 inevitably wins. The resulting maximum in
the temperature dependence of resistance R��� occurs in
region (2) for �2

g < �T , or in region (3) in the opposite
case—the latter is illustrated in Fig. 3.

In the case of weak dephasing, the MT contribution,
Eq. (12), takes over the AL one, Eq. (11). If dephasing is so
small that 
3

�gT 	 �T , it dominates already at �� 1,
leading to a monotonic decrease in R���. For �T 	

3
�gT 	 1 the temperature dependence of resistance re-

mains qualitatively the same as in Fig. 3. However, the
position of the maximum is determined now by 
�, which
makes it sensitive to a weak magnetic field. Such a field
reduces ��, resulting in the appearance of positive magne-
toresistance and a shift of the maximum in R��� to lower
temperatures. This is in a qualitative agreement with recent
experimental measurements [8]. Note that the importance
of superconducting fluctuations, e.g., for the magnetoresis-
tance at low T, is well known [15]. However, neither the
temperature dependence of R near Tc nor the novel MT
mechanism were considered before.

In conclusion, we have demonstrated that the resistance
of the effectively granular system, characterized by in-
equalities (1), may have a pronounced maximum as T
approaches Tc. This maximum is due to the competition
between the fluctuation suppression of the one-electron
tunneling between grains with the enhancement of trans-
port due to the coherent charge transfer of the fluctuation
Cooper pairs. Only at the very edge of the transition does
the decay in the resistance become similar to the mono-
tonic one in the amorphous system. Such a distinctive

feature together with the possible sensitivity to weak mag-
netic fields can serve as a benchmark of the effective
granularity of a disordered system.
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