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We study the charge density distribution, the electric field profile, and the resistance of an electro-
statically created lateral p-n junction in graphene. We show that the electric field at the interface of the
electron and hole regions is strongly enhanced due to limited screening capacity of Dirac quasiparticles.
Accordingly, the junction resistance is lower than estimated in previous literature.
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Unusual electron properties of graphene are an active
topic of fundamental research and a promising source of
new technology [1]. A monolayer graphene is a gapless
two-dimensional (2D) semiconductor whose quasiparticles
(electrons and holes) move with a constant speed of v �
106 m=s. The densities of these ‘‘Dirac’’ quasiparticles can
be controlled by external electric fields. Recently, graphene
p-n junctions (GPNJ) have been realized experimentally
[2], in which electron density ��x� changes gradually
between two limiting values, �1 < 0 and �2 > 0, as a
function of position x. This change occurs over a length
scale D determined by the device geometry. For a junction
created near an edge of a wide gate (Fig. 1), D is of the
order of the distance to this gate.

In theory, GPNJ can exhibit a number of intriguing
phenomena, including microwave-induced [3] and
Andreev [4] reflection, lensing [5], and Klein tunneling
[6,7]. Previously, Klein tunneling of massive Dirac quasi-
particles was studied in tunnel diodes. In such semicon-
ductor devices, the quasiparticle tunneling probability is
given by [8] T � exp����2=e@vjFpnj�, where Fpn is the
electric field in the gapped region. The single-particle
problem for a massless case of graphene is mathematically
equivalent, except the role of the gap � is played by @vky.
Integrating T�ky� over the transverse momentum ky to get
conductance and then inverting it, one finds the resistance
R per unit width of the GPNJ to be [7]

 R � ��=2��h=e2�
���������������������
@v=ejFpnj

q
: (1)

Below, we show that a quantitative comparison of this
formula with experiments [2] requires taking into account
many-body effects, in particular, nonlinear screening. We
analyze this problem in a controlled manner treating the
strength of Coulomb interactions � � e2=�@v as a small
parameter. Here, � is the effective dielectric constant.
Small � can be realized using HfO2 and similar large-�
substrates or in the presence of water (ice), �� 80. For
graphene on a SiO2 substrate, � � 0:9, in which case we
expect corrections to our analytic theory to be �25%.

Our main findings are as follows. First, the electric field
at the p-n interface is given by

 ejFpnj � 2:5@v�1=3��0cl�
2=3; (2)

where �0cl > 0 is the density gradient at the p-n interface
computed according to classical electrostatics. Our result
for ejFpnj exceeds a naive estimate ejFpnj � @vkF��1�=D,

where kF �
����������
�j�j

p
is the Fermi wave vector, by a para-

metrically large factor ��kFD�1=3 � 1 (which in practice
may approach �10). The enhancement is caused by the
lack of screening at this interface where the quasiparticle
density is very small. The calculation of Fpn requires going
beyond the linear-response approach [9–11] to screening
[12]. Our second main result is that Eq. (1) is rigorously
valid if �� 1, in which case we can substitute Fpn from
Eq. (2) in Eq. (1) to obtain [13]

 R � �1:0	 0:1��h=e2���1=6��0cl�
�1=3: (3)

This value of R is parametrically smaller than ��=2�


�h=e2�
���������������������
kF��1�=D

p
that one would get assuming the afore-

mentioned naive estimate of ejFpnj [14].
As an application of Eq. (3), let us consider a prototyp-

ical geometry depicted in Fig. 1. The voltage difference
�Vg between graphene and the semi-infinite gate with the
edge at x � xg determines the total density drop �2 �

�1 � ��Vg=4�eD. The density �2 is assumed to be fixed
by other means, e.g., a global ‘‘backgate’’ on the opposite

− − − − −

FIG. 1 (color online). Device geometry. The semi-infinite gate
on the left side (beneath the graphene sheet) controls the density
drop �2 � �1 across the junction, while another infinite backgate
above the sheet (not shown) fixes the density �2 at far right. The
smooth curves with the arrows depict typical ballistic trajectories
of an electron (�) and a hole (�). The wavy curve symbolizes
their recombination via quantum tunneling.
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side of the graphene sheet (not shown in Fig. 1). This
model is a reasonable approximation to the available ex-
perimental setups [2]. An analytical expression for �cl�x�
follows from the solution of a textbook electrostatics prob-
lem, Eq. (10.2.51) of Ref. [15]. It predicts that function
�cl�x� crosses zero at the point xpn � xg � �D=��

�1� �j�1j=�2� � ln�j�1j=�2�
. Thus, for obvious physical
reasons, the position xpn of the p-n interface is gate-voltage
dependent [16]. Taking the derivative of �cl at x � xpn and
substituting the result into Eq. (3), we obtain

 R �
0:7

�1=6

h

e2

�
1�

�1

�2

�
2=3
��������D�1

��������
1=3
; j�1j �

1

D2 : (4)

At fixed �2, R��1� has an asymmetric minimum at �1 �
��2. Away from this minimum, the more dramatic R��1�
dependence (of potential use in device applications) occurs
at the �1 ! 0 side where R diverges. The reason for this
behavior of R is vanishing of the density gradient �0cl�x� at
far left (above the gate). Equation (4) becomes invalid at
j�1j & 1=D2 where the gradual junction approximation
breaks down. At this point, R� �h=e2�D.

Let us now turn to the derivation of the general formula
(3). Our starting point is the basic principle of electrostat-
ics, according to which we can replace the potential due to
the external gates with that created by the fictitious in-
plane charge density �cl�x�. Shifting the origin to x � xpn,
we have the expansion �cl�x� ’ �

0
clx for jxj � D. The

induced charge density ��x� attempts to screen the external
one to preserve charge neutrality; thus, a p-n interface
forms at x � 0. We wish to compute the deviation from
the perfect screening ��x� � �cl�x� � ��x� caused by the
quantum motion of the Dirac quasiparticles.

Thomas-Fermi domain.—Consider the region jxj � xs,

 xs � �1=����
2�0cl�

�1=3: (5)

At such x, the screening is still very effective, j��x�j �
j�cl�x�j because the local screening length rs�x� is smaller
than the characteristic scale over which the background
charge density �cl�x� varies, in this case minfjxj; Dg.
Indeed, the Thomas-Fermi (TF) screening length for gra-
phene is [12] rs � ��=2�e2��d�=d�� � 1=�

�������
j�j

p
, where

� is the chemical potential

 ���� � sgn���
����
�
p

@vj�j1=2 (6)

appropriate for the 2D Dirac spectrum. Substituting �cl�x�
for �, we obtain rs � j�2�0clxj

�1=2 at jxj � D. Therefore,
at jxj � xs, the condition rs � jxj that ensures the nearly
perfect screening is satisfied.

The behavior of the screened potential V�x� and the
electric field F�x� � �dV=dx at jxj � xs can now be
easily calculated within the TF approximation,

 ����x�
 � eV�x� � 0: (7)

It leads to the relation

 eF�x� ’ �@v
���������
�=4

p
��0cl=jxj�

1=2; xs � jxj � D; (8)

which explicitly demonstrates the aforementioned en-
hancement of jF�x�j near the junction. The TF approxima-
tion is valid if k�1

F �x� � minfjxj; Dg. For �� 1, this
criterion is met if jxj � xs. For �� 1, the TF domain
extends down to jxj � xTF �

����
�
p

xs, see below.
A more formal derivation of the above results is as

follows. From 2D electrostatics [15], we know that

 ��x� � �cl�x� � ��x� �
�

2�2e
P
Z dz
z� x

F�z�: (9)

Combined with Eqs. (6) and (7), this yields

 ��x� � �0clx �
�����������
�0clx

3
s

q
P
Z 1

0

xdz

z2 � x2

d
dz

������������
j��z�j

q
: (10)

Here, the upper integration limit was extended to infinity,
which is legitimate if D� xs. The solution for ��x� can
now be developed as a series expansion in 1=x. The leading
correction to the perfect screening is obtained by substitut-
ing ��x� � �0clx into the integral, yielding ��x�=��x� ’
��=4�jxs=xj

3=2. In accord with the arguments above, this
correction is small at jxj � xs. Furthermore, it falls off
sufficiently fast with x to ensure that to the order O�xs=D�,
the results for V�x� and ��x� at the origin are insensitive to
the large-x behavior. In the opposite limit, jxj � xs, one
can show that

 �TF�x� ’ c2�0cl

x2

xs
; ejFTFj ’ c�@v�1=3��0cl�

2=3; (11)

where c� 1 is a numerical coefficient. (The subscripts
serve as a reminder that these results are obtained within
the TF approximation.)

Unsuccessful in finding c analytically, we turned to
numerical simulations. To this end, we reformulated the
problem as the minimization of the TF energy functional

 E�V�x�
 � E0 �
Z
eV�x�

�
1

2
��x� � �cl�x�

�
dx; (12)

 E0 �
e3

3�@2v2

Z
jV�x�j3dx; (13)

where ��x� is defined by Eq. (9). The convolution integral
in that equation was implemented by means of a discrete
Fourier transform (FT) over a finite interval�D � x < D.
Similarly, the integral in Eq. (12) was implemented as a
discrete sum. Since the FT effectively imposes the periodic
boundary conditions on the system, we chose the back-
ground charge density in the form

 �cl�x� � �0 sin��x=D�; (14)

so that the p-n interfaces occur at all x � nD, where n is an
integer. Starting from the initial guess � � 0, the solution
for ��x� and V�x� within a unit cell �D � x < D was
found by a standard iterative algorithm [17]. As shown in
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Fig. 2(a), at large x, the TF density profile is close to
Eq. (14). At small x, it is consistent with Eq. (11) using
c � 0:8	 0:05, cf. Fig. 2(c).

Dirac domain.—Let us now discuss the immediate vi-
cinity of the p-n interface, jxj< xTF �

����
�
p

xs (the precise
definition of xTF is given below). At such x, the TF ap-
proximation is invalid and instead we have to use the true
quasiparticle wave functions to compute � and V. For a
gradual junction, the two inequivalent Dirac points (‘‘val-
leys’’) of graphene [1] are decoupled, and the wave func-

tions can be chosen to be two-component spinors
exp�ikyy�� 1�x� 2�x�


T (their two elements represent the
amplitudes of the wave function on the two sublattices of
graphene). Here we already took advantage of the transla-
tional invariance in the y-direction and introduced the
conserved momentum ky. The effective Hamiltonian we
need to diagonalize has the Dirac form

 H � @v��i�1@x � �2ky� � eV�x�; (15)

where �1 and �2 are the Pauli matrices. At the end of the
calculation, we will need to multiply the results for ��x� by
the total spin-valley degeneracy factor g � 4.

The solution of this problem can be obtained analyti-
cally under the condition �� 1. In this case, it is legiti-
mate to directly substitute the TF result for the electrostatic
potential V�x� into Eq. (15). In particular, we can assume
that the electric field F�x� is uniform at jxj � xs.

In order to understand this statement, one needs to
distinguish between the electron density ��x� and the total
charge density��x� � �cl�x� � ��x�. As mentioned above,
��x� is correctly described by the TF approximation only at
jxj �

����
�
p

xs. Nevertheless, the leading-order behavior of
��x� is given by this approximation at all x. The deviation
of the true ��x� from �TF�x� appears only when both of
them are so small that the total charge density is dominated
by the external one: ��x� ’ �0clx. Since the electric field is
determined by the total charge, at any x, it can be safely
taken from the TF solution.

Let us elaborate. Since the potential V�x� is small near
the interface and the spectrum is gapless, ��x� must be
smooth and have a regular Taylor expansion at x! 0,

 ��x� � a1x� a3x3 � . . . (16)

Requiring the leading term to match with the TF Eq. (11) at
the common boundary x � xTF �

����
�
p

xs of their validity,
we get a1 �

����
�
p

�0cl. This means that the net charge per unit
length of the interface on the n-side of the junction is
somewhat smaller than the TF approximation predicts, by
the amount of �Q � e

R
1
0 ���x� � �TF�x�
dx�

����
�
p

�0clx
2
TF.

In turn, the true jFpnj is lower than jFTFj by ��Q=�xTF.
However, for �� 1, this is only a small, O��� relative
correction.

As soon the legitimacy of the linearization V�x� ’
�Fpnx is established, wave functions  1 and  2 for arbi-
trary energy � are readily found. Since � enters the Dirac
equation only in the combination�eV�x� � � � eFpn�x�
x��, the energy-� eigenfunctions are the � � 0 eigenfunc-
tions shifted by x� � �=�eFpn� in x. In turn, these are
known from the literature [7,8]. They are expressed in
terms of confluent hypergeometric functions ��a; b; z�
[18]. The sought electron density ��x� can now be obtained
by a straightforward summation over the occupied states
(� � 0), which leads us to [19]
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FIG. 2 (color online). (a) Electron density in units of 4=D2 for
� � 1, �0 � 75 and � � 0:1, �0 � 100. Thicker curves are
from minimizing the TF functional, Eqs. (12)–(14); thinner lines
are from replacing E0 in this functional by the ground-state
energy of Hamiltonian (15). The p-n interface is at x � 0.
(b) Magnitude of the electric field in units of 4@v=eD2 for the
same parameters. Numerical values ‘‘34’’ and ‘‘60’’ are the
predictions of Eq. (2) for the nearby TF (thick) curves [20].
(c) Enlarged view of the � � 0:1 data from the panel (a) and the
numerically evaluated Eq. (17).
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 ��
g

x2
TF

Z dky
2�

Z x

0

dz

�e2�	

����������
�
i	;

1

2
;
z2

ix2
TF

���������
2
�

1

2

�
(17)

where 	 � k2
yx2

TF=4 and xTF �
�������������������
@v=jFpnj

q
�

����
�
p

xs. This

formula is fully consistent with Eq. (14): the Taylor ex-
pansion of the integrand yields, after a simple algebra,
a1 � g=�

���
2
p
�2x3

TF�, a3 � g
���
2
p
=�3�3x5

TF�, etc. Using the
known integral representations of the function � [18],
one can also deduce ��x� at x� xTF. The leading term
is precisely the TF result �TF�x� � gx2=4�x4

TF. Therefore,
Eq. (17) seamlessly connects to Eq. (11) at x� xs. [At such
x, corrections to �TF�x�, including Friedel-type oscilla-
tions, are suppressed by extra powers of parameter �.]
We conclude that for �� 1, we have obtained the com-
plete and rigorous solution for ��x�, V�x�, and Fpn

[Eq. (2)], in particular. As discussed in the beginning, it
immediately justifies the validity of Eq. (1) and leads to our
result for the ballistic resistance, Eq. (3). However, in
current experiments �� 1 and in the remainder of this
Letter, we offer a preliminary discussion of what can be
expected there.

Since it is the strip jxj< xTF that controls the ballistic
transport across the GPNJ [7], the constancy of the electric
field in this strip is crucial for the accuracy of Eq. (1). This
is assured if �� 1, but at �� 1, the buffer zone between
xTF and xs vanishes, and so we expect F�xTF� and F�0� �
Fpn to differ by some numerical factor.

To investigate this question, we again turned to numeri-
cal simulations. We implemented a lattice version of the
Dirac Hamiltonian by replacing �i@x in Eq. (13) with a
finite difference on a uniform grid. We also replaced E0 in
Eq. (15) by the ground-state energy of H, taken with the
negative sign: E0 � �L�1

y
P
j�j=�1� exp�
�j�
. Here, �j

are the eigenvalues ofH (computed numerically) and the 

is a computational parameter (typically, 4 orders of mag-
nitude larger than 1=maxejVj). We have minimized thus
modified functional E by the same algorithm [17], which
produced the results shown in Fig. 2. As one can see, for
� � 0:1, the agreement between analytical theory and
simulations is very good. However, for � � 1, we find
that jFpnj is approximately 25% smaller than given by
Eq. (2). Note also that for � � 1, the electric field is
noticeably nonuniform near the junction, in agreement
with the above discussion [20]. Therefore, Eq. (1) should
also acquire some corrections. In principle, we could com-
pute numerically the transmission coefficients T�ky� for
this more complicated profile of F�x�. However, this would
not be the ultimate answer to this problem. Indeed, at ��
1 electron interactions are not weak, and so exchange and
correlation effects are likely to produce further corrections
to the self-consistent single-particle scheme we employed
thus far, which may be quite nontrivial inside the Dirac
strip jxj< xTF. We leave this issue for future investigation.
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