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New effects of self-organization and polarization pattern formation in semiconductor microcavities,
operating in the nonlinear regime, are predicted and theoretically analyzed. We show that a spatially
inhomogeneous elliptically polarized optical cw pump leads to the formation of a strongly circularly
polarized ring in real space. This effect is due to the polarization multistability of cavity polaritons which
was recently predicted. The possible switching between different stable configurations allows the
realization of a localized spin memory element, suitable for an optical data storage device.
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Introduction. —Self-organization and pattern formation
are among the most interesting phenomena in various non-
linear systems in physics, chemistry, and biology. In quan-
tum physics nonlinearity arises from many-particle
interactions, which being treated within the framework of
the mean-field approximation result in the Hartree-Fock
equations for interacting fermions and the Gross-Pitaevskii
(GP) equation for interacting bosons. The latter is widely
used for the description of the dynamics of atomic Bose-
Einstein condensates (BECs) [1]. Mathematically, the GP
equation is equivalent to the nonlinear Schrodinger equa-
tion of classical nonlinear optics. It describes a variety of
intriguing phenomena in nonlinear media, such as vortex
formation [2], self-focusing, and soliton propagation [3].

Recently, examples of self-organization were reported in
the system of interacting 2D excitons, where the formation
of ring patterns in the emission distribution was experi-
mentally observed in the nonlinear regime [4]. This phe-
nomenon was initially attributed to the superfluid phase
transition. More recent models, however, identified the
crucial role of the separation of classical electron and
hole plasmas with emission from the sharp circular bound-
ary between these two regions [5]. Because of strong
dephasing this phenomenon can be described by classical
diffusion equations for electrons and holes, rather than by a
quantum equation of the GP type for a spatially coherent
excitonic BEC.

Cavity polaritons seem to be more appropriate candi-
dates for the observation of quantum nonlinear phe-
nomena. Being combinations of the cavity photon and
2D exciton, they have extremely small effective mass
(about 107%=107> of the free electron mass) and, at the
same time, they interact efficiently with one another.
Polariton-polariton interactions lead to various nonlinear
effects in microcavities, including parametric scattering [6]
and bistability [7]. Because of the long decoherence time
[8] and the fact that in the low density limit they behave as
weakly interacting bosons [9], the dynamics of the polar-
iton system can be described by the GP equation [10,11].
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Being treated coherently, polariton-polariton interactions
result in the suppression of Rayleigh scattering [10] and
ring pattern formation [11] in polariton systems. Both
effects are due to the renormalization of the dispersion of
elementary excitations and an associated superfluid tran-
sition in the system.

An important peculiarity of cavity polaritons is related
to their spin degree of freedom [12]. Polaritons have two
possible spin projections on the structure growth axis, =1,
corresponding to the right (o) and left (o_) circular
polarizations of emitted photons. In the case of nonzero
in-plane wave vector these two components are mixed by
TE-TM splitting [13]. A further mixing of the linear polar-
izations appears due to the spin dependent polariton-
polariton interaction [14], which affects the superfluid
properties of the system [11,15] and leads to remarkable
nonlinear effects in polariton spin relaxation, such as self-
induced Larmor precession and inversion of the linear
polarization during the scattering act [12,16].

Recently, the scalar semiclassical approach based on the
Gross-Pitaevskii equation was extended to account for the
two polarization states of resonantly pumped cavity po-
laritons [17]. It was shown that the nonlinear, polariza-
tion dependent polariton-polariton interactions result in a
multistability of the driven polariton mode.

In this Letter we analyze how the polarization multi-
stability and hysteresis can lead to polarization pattern
formation in realistic semiconductor microcavities.

Qualitatively, the polarization multistability and hys-
teresis can be understood as follows. Let us consider a
quantum microcavity resonantly driven at k = 0 by a cw
laser beam with circular polarization degree:

pump:P+_P—

. et 1
= (1)

where P, and P_ represent the intensities of the o, and
o_ components of the pump, respectively. The polariton
wave function ¢, satisfies the driven spinor Gross-
Pitaevskii equation [17], which in the stationary regime
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yields a cubic equation for the dependence of the internal
intensities n, = |, |> on the intensities of the pump:

2 B2
[(EO —E, +n, + %n_g> + 4—72}10 =P,
1

where o = *, 7 is the polariton lifetime, E, is the cw
pump energy, Ej is the bare polariton energy, and ay) is
the matrix element of polariton-polariton interaction in the
parallel spin (antiparallel spin) configuration, respectively.
It is well known that for 2D excitons and exciton-polaritons
the exchange interaction strongly dominates over the direct
one, and thus polariton-polariton interactions are strongly
anisotropic |a,| < a; [18]. Equation (2) represents the
behavior of only one macroscopically occupied state. The
fields were rescaled so that only the ratio of a, to «a; is
significant. If we suppose that o, = 0, then the behavior
of o, and o_ polarizations becomes independent and
the internal intensity of each component is given by an
S-shaped curve, as shown in Fig. 1(a).

When an external pump is switched on, n, lies on the
lower branch of its bistability curve if P, is less than P;. As
P, is increased there is a jump in n,, at the point P, = Py,
corresponding to the transition to the upper branch of the
bistability curve. If one then starts to decrease P,, the
transition back to the lower branch of the bistability curve
occurs at the intensity P, = P,. Crucially, because the o ;.
and o_ fields can lie on the same or different branches of
the bistability curve, the system can support four stable
configurations thus demonstrating multistability. There is
also an associated hysteresis not only in the total intensity
of the internal field but also in its circular polarization
degree [17].

In order to reveal spin ring formation, let us now con-
sider a cavity pumped by a cw Gaussian pump, with
slightly positive circular polarization degree, oriented at
normal incidence. The dynamics of the system is described
by the driven spinor GP equation:
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FIG. 1. (a) The spinor polariton population n, as a function of

pumping intensity P, for a single polariton state. With increas-
ing intensity, the population n, jumps when P, = P; to the
upper branch of the bistability curve. (b) Gaussian pump profile
showing the o, polarized intensity (black) and o_ intensity
(gray). When P, is greater than P; (solid part of curves), n,, lies
on the upper branch of its bistability curve, otherwise (dashed
part) it lies on the lower branch.
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where the o polarized internal cavity polariton field ,,
depends on the spatial coordinate r. The kinetic energy
operator E|p represents the dispersion of the lower polar-
iton branch (the operator depends on the Laplacian opera-
tor). The pump field is given by p,(r, 1) = A e */F,
where A, are the peak amplitudes.

To understand the situation qualitatively we first con-
sider the case a, =0, 0 < p?"™ < 1, and neglect the
kinetic energy term; that is, we assume an infinite polariton
effective mass. In this limit the spreading of particles in
real space is suppressed and the polarization dynamics at a
given point in space depends only on the pump intensity at
that point. This allows a simple analytical consideration of
the polarization distribution in real space using Eq. (2). The
intensity profile, P, (r) = |p,(r)|?, of the pump is illus-
trated in Fig. 1(b), where the black and gray curves show
P (r) and P_(r), respectively. Close to r = 0 the intensity
of the pump is large enough such that both n, and n_ lie on
the upper branch of their bistability curves. In this case the
circular polarization degree would be small. However,

beyond
R 1 ! A% @
i p— 1’1 _ s
8 2 <P 1)

the intensity of P_ is too small for n_ to be on the upper
branch. Hence we expect a region of strong circular polar-
ization, since n . remains on the upper branch. This region
continues until the point

2
ry= R 1n<ﬁ>, )

beyond which P, is also too small for n, to be on the
upper branch and we again have a low circular polarization
degree. In other words we expect a strongly circularly
polarized ring (spin ring) to appear in the spatial emission
pattern, starting from r = r, and finishing at r = ry.
Numerical results.—The finite effective mass of polari-
tons should lead to the spreading of the polarized ring in
real space. To accurately account for this effect we return
to Eq. (4) and solve numerically using a time propagation
method. To minimize the number of parameters in our
model we consider a parabolic dispersion (this is still
realistic since we consider excitation at k = 0) described
by an effective mass m. Our results are shown in Fig. 2.
We clearly see that a ring of circular polarization appears
in real space [2(b)] and there are associated steplike
changes in the total intensity [2(a)] caused by changes of
n, between upper and lower branches. However, we notice
that the size of the ring has expanded after the initial switch
on of the pump [Figs. 2(c) and 2(d)]. When one examines
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FIG. 2. Polariton field caused by excitation with a Gaussian
pump with p2"™ = 0.1. (a) The total intensity of the polariton
field in a 0.25 X 0.25 mm area in real space at t = 500 ps (when
quasiequilibrium is established). (b) The corresponding circular
polarization degree. (c) The time dependence of the total inten-
sity of a radial slice in real space. (d) Time dependence of the
circular polarization degree. Parameters used for (a)—(d): 7 =
3ps, ay/a; = —0.1, E, — E;p(0) = 0.4 meV, R = 0.17 mm,
m=10"* X m, (m, is the free electron mass). The pump is
switched on at t = 50 ps. (e) Cross section of the fields (at 1 =
500 ps) showing n . (solid line) and n_ (dashed line) for the case
of finite (black) and infinite effective mass (gray). Vertical lines
show the radii at which turning points in the S-shaped curves
[shown by spots in Fig. 1(b)] occur. These can be calculated from
Eq. (2) or by using a diagram like Fig. 3 of Ref. [17]. (f) The
same as (e) but for the case a, = 0.

the profile of the ring [Fig. 2(e)] after some time one finds
that the ring appears with greater radii than that predicted
by Egs. (4) and (5). This is also the case when a, = 0 [see
Fig. 2(f)], although we see that in the case of infinite
polariton effective mass the ring does form where we
expect from Egs. (4) and (5).

The increase in the ring radii is due to the propagation of
polaritons in real space, which tends to smooth the density
distribution. Although the ring may initially form as we
expect with external radius r, the propagation of polar-
itons means that the region immediately beyond r; also
switches to the upper branch (for the o, component). Once
this region has switched, the further propagation of polar-
itons allows the next region to switch and so the ring

expands. However, the ring cannot continue to expand
forever since eventually we reach the point where P, =
P,. Beyond this point there is no upper branch for the n
field to switch to. Exactly the same account holds true for
the o_ polarization and the end result is that the ring radii
are increased. This increase does not depend on the effec-
tive mass of polaritons; changing the effective mass only
changes the time required for polaritons to obtain the larger
radii (for infinite effective mass the time is infinite). The
larger radii are given by similar equations to Egs. (4) and
(5) with the difference that P, is replaced by P,.
Figure 2(f) shows that for @, = 0 the ring appears with
radii given by P, = P, in the case of finite effective mass.

We note that no elastic parametric scattering was ob-
served in our calculations. Although such scattering is
automatically accounted for by the Gross-Pitaevskii equa-
tions, our parameters are parametrically stable, which can
be checked using the methods used in Ref. [19]. We also
note that the transverse effects studied in the present Letter
are unrelated to the use of a wedge-shaped sample and
thus are different from those studied experimentally in
Ref. [20].

Polarization control of localized states.—For practical
applications, such as optical data storage, it is useful to be
able to switch between the stable states in a system [21].
We now consider an experiment that can achieve such
switching using various pulses. We will create a localized
polariton state using a cw linearly polarized Gaussian
beam with intensities P, < P, < Py. In this case both n
and n_ lie on the lower branch of the bistability curve after
the pump is switched on (at + = 50 ps in our calculation).
We then consider excitation with successive pulses of o
and o_ polarizations. These pulses are chosen to be in
phase with the cw pump. They are able to independently
switch n, and n_ to the upper branch of the bistability
curve. We can then apply pulses of o, and o_ polar-
izations, which are out of phase with the cw pump. The
application of a pulse P, that is out of phase causes the n,,
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FIG. 3. Temporal dynamics of the total polariton intensity (a)
and circular polarization degree (b) in real space for a polariza-
tion switching experiment. A linearly polarized Gaussian pump
is turned on at ¢t = 50 ps. Pulses arrive at 550, 1050, 1550, and
2050 ps, with o4, 00—, o, and o_ polarizations, respectively.
The first two pulses are in phase with the cw pump; the second
two are out of phase. The other parameters were identical to
those used in Fig. 2.
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FIG. 4. Intensity of overlapping identically (a) and oppositely
polarized spin rings (b) in a 0.4 X 0.2 mm region in space.
(c),(d) show the corresponding circular polarization degrees.
The parameters used were the same as in Fig. 2 but including
a disorder potential with a Gaussian correlation length of 2 um
and a root mean squared value of 0.2 meV.

component to return to the lower branch. The full sequence
of results is shown in Fig. 3.

In this way we can achieve full control of the polariza-
tion of a localized state using various switching pulses. In
our calculations the response time is less that 10 ps. The
threshold power to observe such an effect should be much
smaller than that required in conventional nonlinear optical
systems [22]; due to the strength of the polariton interac-
tions, the threshold power for observing bistability is esti-
mated to be 4 orders of magnitude lower [17].

Disorder and interaction between spin rings.—In real-
istic microcavities, polaritons are subject to a static disor-
der potential arising from cavity width variations. To check
the effect of disorder on polarization patterns we intro-
duced a disorder potential [23] into Eq. (3). We considered
two overlapping spin rings (Fig. 4) excited by elliptically
polarized Gaussian beams with either identical or opposite
circular polarization degrees. Our results show that
although the disorder distorts spin rings, they can still be
observed in an experiment. The midway point between the
spin rings is strongly circularly polarized if the rings are
copolarized, yet it is linearly polarized if the rings have
opposite circular polarization degrees.

Conclusions.—We have demonstrated theoretically how
rings of strong circular polarization (spin rings) can be
realized in semiconductor microcavities by using a spa-
tially inhomogenous cw laser excitation. The radii of these
rings was estimated analytically. The experimental obser-
vation of the rings would demonstrate the existence of
polarization multistability in semiconductor microcavities.
Using various pulses, the polarization multistability, allows
one to switch the polarization of a localized polariton state.
Such control could form the basis for an optical data
storage device.
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