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It is shown that the edge-localized modes (ELMs) observed in tokamak H mode discharges can be
explained as external magnetohydrodynamic (MHD) mode amplification due to coupling with scrape-off-
layer current. The proposed model offers a new ELM mechanism that produces a sharp onset and initial
fast growth of magnetic perturbations even when the underlying equilibrium is only marginally unstable
for a MHD mode and also a quick quenching after the bursting peak. The theory also reproduces various
other ELM features.
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Understanding the edge-localized modes (ELMs) in the
H mode phase is important for tokamak confinement [1,2].
Various theories have been proposed to explain ELM ex-
citation, such as peeling-ballooning modes [3], nonlinear
ballooning modes [4], edge Taylor relaxation [5], and blob
formation theories [6]. Bursts in the scrape-off-layer (SOL)
current have been observed concurrently with ELMs ([7–
9] and references therein). The possible connection be-
tween ELMs and SOL current bursting was pointed out
in Ref. [7]. It is therefore of interest to clarify how the
coupling of the SOL current to magnetohydrodynamic
(MHD) modes could lead to ELM bursting.

In this Letter, we show that there is a positive feedback
process between the external plasma modes and the SOL
current (referred to as resistive SOL modes): The initial
magnetic perturbation at the pedestal causes radial trans-
port, that discharges the pedestal heat and particles to the
SOL and results in the bursting of the SOL current. In turn,
the SOL current bursting can induce a stronger magnetic
perturbation at the pedestal. This positive feedback causes
the resistive SOL modes to grow nonlinearly and sharply
even near the linear MHD marginal stability limit, leading
to the ELM burst.

Since most ELMs have high-n features, we focus our
investigation on the high-n modes. Here, n is the toroidal
mode number. Note that high-n modes usually decay rap-
idly before reaching the conducting wall, we can ignore the
conducting wall effect and consequently assume that the
vacuum region inside the vacuum chamber extends to
‘‘infinity.’’ The coordinate system ( , �, �) is employed,
where  represents the poloidal magnetic flux, � is the
poloidal angle, and � is the axisymmetric toroidal angle.
The equilibrium magnetic field is expressed as B � r��
r � g� �r�, where boldface indicates a vector quantity.
We introduce  b� and  b� to designate, respectively, the
radial locations for the interface between the plasma and
the SOL current layer and the interface between the SOL
current layer and the vacuum region outside the SOL
current layer.

The equation describing the coupling of the MHD
modes and the SOL current can be derived from

Ampere’s law with the generalized Ohm’s law included

 r � �B � �0�J
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where �B and �J represent the perturbed magnetic field
and the current density,�0 is the vacuum permeability, e is
the charge, n, T, and P represent the density, temperature,
and pressure, E is the electric field, the subscripts i and e
denote the ion and electron species, the average conduc-
tivity is � � e2�11L=�meh1=ne�eii�, �ei is the electron-ion
collision time, the quantity � � �12=�11 � 0:71 applies
for a deuterium plasma, where �11 � 1:975 and �12 �
1:389 are the Spizer-Harm coefficients [10], L specifies
the field line length between two divertors,me;i is the mass,
and h� � �i represents a field line average. Both conductive
and thermal currents are included in Eq. (1). Since the
current perturbation �J has to be evaluated nonlinearly,
we have used the difference of the total current J (the first
term on the right-hand side) and the initial current J0

before MHD activities appear, to calculate it in Eq. (1).
For simplicity, we consider the large aspect ratio limit

and the single mode case. Applying the operator rr � r�
to Eq. (1), we obtain
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where r is the minor radius, k� represents the normalized
wave number in � coordinate, �w � �0wb�, b is the
location in minor radius of the thin SOL current layer,
and the subscript k denotes the projection parallel to the
magnetic field lines. Note that the SOL width w is small
(about 0.02 m). The radial magnetic field �Br is assumed to
be continuous across the SOL, as in the usual tearing mode
treatment. We have noted that the edge plasma transport is
different from the core plasma transport. Edge transport is
nonaxisymmetric and exhibits ‘‘intermittency’’ [11]. The
nonaxisymmetric nature of the SOL current during the
ELM activities has been observed experimentally ([8]
and references therein).
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The SOL current in Eq. (2) can be expressed using the
theory developed in Ref. [12]. Note that electrons and ions
have vastly different mobilities in the SOL. We extend the
SOL current expression in Ref. [12] to a two-fluid descrip-
tion for temperature. The SOL current can be therefore
expressed as Jk � JsatĴk, where
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1� Ĵjj
�1�

jsat;h

jsat;c
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Jsat � en�k�Ti � Te�=mi	
1=2, k is the Boltzmann constant,

V0 represents the applied voltage between the hot and cold
divertors, 	 � �miTe=2
me�Te � Ti�	

1=2, the subscripts h
and c denote the sheaths, respectively, at the hot and cold
divertors, �0 � �kTeh=�eLJsat�, and s represents the field
line arc length.

The jump of the radial derivative of the perturbed mag-
netic field on the left-hand side of Eq. (2) can be obtained
by matching to the outside solutions as in the conventional
tearing mode theory, yielding

 �w
@�Br
@t
��0�Br � i�0wk��Jk; (3)

where �0 � bd ln�Br=drj
 b�
 b�

is the usual tearing mode
parameter. In order to connect the peeling-ballooning the-
ory, we introduce also the energy integral type of notation
for �0. Since the experimental observation of the magnetic
perturbations is at the conductor wall, one can mathemati-
cally model a distributed SOL current of finite but small
thickness with a thin current sheet using the Green func-
tion method, just as the so-called ‘‘control surface’’ con-
cept in Ref. [13]. In this description, the tearing mode pa-
rameter can be expressed as �0 � �f2m=�1�
�a=b�2m	g��W1=�Wb� [14]. Here, �W1 and �Wb represent
the ‘‘no-wall’’ and ‘‘ideal wall’’ energy integrals, a is the
minor radius of the plasma torus, and m is the poloidal
mode number. Note that here the ‘‘wall’’ just represents the
modeled thin current sheet. When a finite thickness layer is
theoretically shrunk into a modeled current sheet, it yields
space on both sides. This causes a modeled thin vacuum
between the modeled thin SOL sheet and the core plasma
in this description. Comparing our governing equation,
Eq. (2), with the governing equation in the previous study
of the SOL current effect in Ref. [15], one can see that the
term on the right-hand side of Eq. (2) is new. The presence
of this new term takes account of the fact that the radial
transport from the pedestal plasma can change the SOL
thermal properties and consequently the current it carries.
It is due to this new term that Eq. (2) contains a positive
feedback process between the resistive SOL modes �Br

and the SOL current �Jk, which provides a physical ex-
planation for ELMs observed experimentally.

To show this positive feedback process, we derive the
analytical solution of Eq. (2),
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where �Br0 is a constant. The solution in Eq. (4) contains
two parts: the solo resistive SOL mode solution (the second
term) and the �Jk driven part (the first term in the square
brackets on the right-hand side). In the case without the
SOL current effect (i.e., �Jk � 0), system is unstable, if
Ref�0g> 0. Note that instabilities would reduce �0 toward
the stable direction in the usual quasilinear picture due to
the induced radial transport. The magnetic perturbation
�Br does not explode without the SOL current coupling.
Instead, with the SOL current taken into account, the first
term on the right-hand side of Eq. (4) leads to a self
amplification loop as follows: High-n resistive SOL modes
�Br can be excited above a critical plasma beta limit �0 >
0. The initial activities of the resistive SOL modes cause a
radial transport, that discharges the pedestal heat and par-
ticles to the SOL and results in the initial bursting of the
SOL current. In turn, the SOL current bursting on the right-
hand side of Eq. (4) amplifies the magnetic perturbation
�Br and induces a stronger radial transport. Consequently,
an even larger SOL current �Jk results. This positive feed-
back process explains the bursting nature of ELMs and
SOL current. The radial transport also reduces the pedestal
pressure gradient and leads the ELMs to damp away as the
self amplification mechanism disappears. The positive
feedback nature also leads ELMs to quench sharply. The
ELM cycle repeats when heating again increases the beta
value. This is a unique nonlinear amplification regime that
occurs at the plasma edge. First, as observed experimen-
tally [2], the influx of the electrons with pedestal tempera-
ture can cause a sudden rise in density in the divertor
sheaths, due to the dislodgement of neutrals from the
saturated target divertors. A sudden increase in sheath
density can cause a rapid increase of the saturated current.

Second, although e
R
t �0dt=�w tends to play a stabilizing role

because the radial transport reduces the pedestal beta so
that Ref�0g< 0, in the first term on the right-hand side of

Eq. (4) e�
R
t �0dt=�w becomes an exponential amplification

factor for the SOL current effect in this case. Note that,
even if �Jk � const, Eq. (4) still yields the mode growth of
the type that is linear in time.

The positive feedback process examined above can be
displayed numerically. A complete numerical simulation
would require a global code which couples the nonlinear
MHD, transport, SOL current, divertor sheath physics, and,
etc. Since we focus only on revealing the amplification
phenomenon, not on the details of the process, we instead
use a simplified model to explain the physics.
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We describe the pedestal temperature and density as
follows:

 Tp�t� � Tp0�1�Qht�QTr�t�	; (5)

 np�t� � np0�1�Dht�DTr�t�	; (6)

where the temperature and density losses due to the radial
transport are described as follows

 QTr�t� � QTr
0

Z t
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dt
�t

���������Br�B

��������
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Z t
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�
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�
	pn

:

Here, Tp0 and np0 are the initial pedestal temperature and
density, the constants Qh and Dh describe the temperature
and density rates of rise due to heating, tc is the critical
time when the linear resistive SOL modes become un-
stable, QTr

0 and DTr
0 are constants specifying the strength

of the radial transport, various constants 	��� are introduced
to describe the dependences of radial transport on the
magnetic field and pressure, �t is the normalization con-
stant and is selected as the ELM pulse duration, and �B is
the normalization factor for �Br, specified by the typical
experimentally observed value. For simplicity, the ion and
electron species in the pedestal are assumed to have the
same temperature and density.

The radial transport results in the increments of the SOL
temperature and density. We describe the temperature for
electron and ion species and density for both species at the
divertor sheaths for t 
 tc � �te as follows:

 Tde;i�t� � Td0
e;i

�
1� Rte;iQ

Tr�t� �te;i� � C
t
e;i

Z t

0

dt
�t

�

�Tde;i
Td0
e;i

�
�te;i
H�Tde;i � T

d0
e;i�

�
; (7)

 nd�t� � Snnd0

�
1� RnDTr�t� �te� � Cn

Z t
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dt
�t

�

�
nd

nd0

�
�n

H�nd � nd0�

�
; (8)

where Td0
e;i and nd0 are the initial divertor sheath tempera-

ture and density, the constants Rte;i and Rn describe, re-
spectively, the coupling factors of the radial temperature
and density transport, the constants Cte;i and Cd describe
the temperature and density cooling rates, and the
Heaviside function H�x� � 1 for x > 0, otherwise 0. Note
that, strictly speaking, H�x� � 0 does not represent that
the cooling term is inactive, but the cooling (sink) and
background transport from the core plasma (source) bal-
ance after ELM quench. In this way, we model the flat
time evolution of the SOL density and temperature be-
tween two subsequent ELM burstings, as observed experi-
mentally. We have introduced Sn�t;�te;i� � S0

n��te;i� �
f2� exp���s�t� tc � �te�	g to simulate the density in-

crement due to the dislodgement of neutrals from the
saturated divertor plates, where �s is a constant and
S0
n��te;i� specifies the density amplification factor. Note

that the perpendicular transport in the SOL can play a
significant role for particle flux with long transit time �t.
The perpendicular transport can smooth SOL temperature
and density. Consequently, the nonaxisymmetric compo-
nent coupled to the MHD modes in Eq. (4) becomes
weaker. Therefore, one can expect S0

n��te;i� to be a decreas-
ing function of �te;i. The ratio of the temperatures in the
hot and cold divertor sheaths is employed as parameter. For
simplicity, we have not taken into account the so-called
divertor temperature instability [16]. We have also ne-
glected other thermalization times for simplicity.

We describe the various energy integrals as follows:
Ref�W1g � Cw���� �c� and �Wb � �W1 � �Wv,
where Cw is a constant, � � 2�0npTp=B2 is the ratio of
plasma to magnetic field pressures, �c denotes the critical
beta for no-wall stability, and �Wv represents the vacuum
energy integral. In our numerical simulation �Wv and
Imf�W1;bg are employed as parameters. The set of equa-
tions, Eqs. (3) and (5)–(8), is solved as an initial value
problem, with the parallel current and other thermal quan-
tities, such as �, updated at each time step. A typical
numerical result is plotted in Fig. 1, with parameters given
as follows: a � 0:54 m, b � 1:02a, w � 0:02 m, m � 30,

FIG. 1. Numerical results for ELMs. The first row describes
the pedestal temperature evolution with time, the second and
third give, respectively, the ion temperature and the ion or
electron density in the hot divertor sheath, the forth is the SOL
current, and the last gives the radial magnetic field �Br. The
right column is the high-time-resolution redisplay of the first
ELM pulse in the left column.
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L � 100 m, �t � 600 �s, �B=�t � 5 T=s, Tp0 �
590 eV, np0 � 9:7� 1019 1=m3, Qh � Dh � 201, QTr

0 �
DTr

0 � 0:41, 	��� � 2, �Wv � 0:005, Imf�W1;bg � 0,
�c � 0:05, Cw � 1, Td0

e;i � 30 eV, nd0 � 1� 1019 1=m3,
Rte � 5, Rti � 2, Rn � 3, Cte � 2:1, Cti � 1:4, Cn � 1:08,
�Br0 � 10�5 T, ������� � 1, Th=Tc � 3, S0

n � 2, �s �
0:5=�te, �te � 10 �s, and �ti � 100 �s. For simplicity,
we assume that V0 � dpec=ds � 0. In Fig. 1, the ELM
bursting and quenching are reproduced as the consequence
of changing pedestal beta and varying SOL current. The
�Br growth exhibits two phases. As plasma beta exceeds
the critical beta value at t � tc � 3:46 ms, the resistive
SOL modes become unstable. Because of the transport
time delay, the divertor sheath temperature, density and
the SOL current initially remain at the equilibrium values
t < tc � �te � 3:47 ms. The magnetic perturbation is
small and gradually decreases due to the reduction of the
pedestal pressure in this initial phase. When the pedestal
heat and particles arrive at the divertor sheaths at t � tc �
�te, the the divertor sheath temperature and especially
density increase suddenly, and consequently the SOL cur-
rent surges. The rapid increase of the SOL current gives
rise to a rapid increase of the magnetic perturbations in the
second phase t > tc � �te. This positive feedback process
defines the bursting feature of ELMs in the numerical
results. As the pedestal density and temperature drop to a
certain level, the particle and heat sources for the SOL are
outbalanced by the cooling and the SOL current reduces. A
smaller SOL current leads to a smaller magnetic perturba-
tion. Consequently, an even smaller SOL current results,
due to the reduction of the particle and heat sources. This
inverted type of positive feedback process leads ELMs to
quench sharply. The further heating shown in the first
frame of Fig. 1 leads to the next ELM cycle.

It is interesting to discuss the effect of the transport time
delay (�te and �ti) under the current ELM physics picture.
Note that the connection length of the SOL is about 100 m.
The electron transit time from the SOL midplane to diver-
tor is about 2 �s; the ion transit time is about 100 �s, for
Te;i � 750 eV. Because of quasineutrality, the electron
transit is decelerated but ion transit is accelerated [17]. In
general, the transit time for the discharged electrons de-
pends on the pedestal temperature or collisionality. The
larger the pedestal collisionality, the longer the transit time.
As shown in Eqs. (7) and (8), a longer transit time results in
a larger delay for the response of the divertor sheath
temperature and density to the transport from the pedestal.
Especially, as discussed earlier, a longer transit time gives
rise to a smaller S0

n, which results in a weaker coupling of
the SOL current to the MHD modes. Since the ELM
bursting relies on the feedback coupling, a weaker cou-
pling leads to a reduced edge-localizing mode strength.
This might explain the experimental observation that the
edge-localizing mode strength decreases as the pedestal
collisionality increases [2].

In conclusion, we find that the high-n resistive SOL
modes can develop into ELMs, if the SOL current is
amplified by the modes. The amplification needs a strong
heat flux to the SOL; The H mode with high pedestal
temperature tends to meet this condition. The proposed
model offers a new ELM mechanism that produces a sharp
onset and initial fast growth of magnetic perturbation even
when the underlying equilibrium is only marginally un-
stable for an MHD mode and also a quick quenching after
the bursting peak. Our picture seems to be consistent with
the experimental observation that the ELM bursting occurs
at the beta value slightly exceeding the marginal stability
limit [18]. Our theory explains also the coexistence of
ELMs with the SOL current bursting as observed experi-
mentally [7–9]. We have also discussed the ELM strength
dependence on the pedestal collisionality, which is also
consistent with the experimental observation [2].
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