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We study the problem of synchronizing a general complex network by means of an adaptive strategy in
the case where the network topology is slowly time varying and every node receives at each time only one
aggregate signal from the set of its neighbors. We introduce an appropriately defined potential that each
node seeks to minimize in order to reach or maintain synchronization. We show that our strategy is
effective in tracking synchronization as well as in achieving synchronization when appropriate conditions
are met.
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In recent years synchronization of large networks of
interconnected systems has been the subject of intense
investigation. In [1] it was shown that, under the assump-
tion that all the systems are identical and the coupling
among the connected systems is of a suitable type, the
stability of the synchronous evolution can be investigated
by means of a ‘‘master stability function’’ approach. Many
papers have followed the approach in [1], focusing on the
way the network topology impacts the stability of the
synchronous evolution [2], e.g., reviewed in [3]. An adap-
tive synchronization approach to obtaining estimates of
unknown system parameters has been pursued in a number
of recent papers [4]. In [5] it was shown that an adaptive
strategy acting on the strengths of the network couplings,
based on information about the dynamics at its nodes, can
be effective in enhancing the stability of the synchronous
state. Here we will present an adaptive approach to syn-
chronize a time varying network that evolves under the
effects of exogenous (unpredictable) factors.

The formulation of many past works on network syn-
chronization of identical systems (see [1] and the related
literature) typically involves coupling to a node i from
other network nodes j through a term of the form

 

�X
j

AijH�xj�t��
�
�

��X
j

Aij

�
H�xi�t��

�
; (1)

where Aij is the weighted N � N network adjacency ma-
trix representing the strength of the coupling from j to i,
(Aii � 0), xi�t� is the n-dimensional state at node i, H:
Rn ! Rn, and the network has N nodes, fi; jg �
1; 2; . . . ; N. For the purposes of our approach, we think of
the first term in (1) as a directly accessible physical signal
received by node i from other nodes in the network, and we
denote this signal

 si�t� �
X
j

AijH�xj�t��: (2)

The second term in (1) results in the convenient property

that the coupling becomes zero when synchronization is
achieved, i.e., when

 x1�t� � x2�t� � � � � � xN�t� � xs�t�: (3)

In order to implement a coupling of the form of (1), the
external information required at node i is the received
signal si�t�, as well as the sum of the input coupling
strengths,

P
jAij. Here we will be concerned with situations

in which the only available external information at node i is
the signal si�t�, and direct knowledge of

P
jAij is unavail-

able. Thus synchronization must be achieved on the basis
of si�t� only. In order to accomplish this, we will propose
and test a simple adaptive strategy. We will also present
numerical experiments that show that our adaptive strategy
can, under appropriate conditions, be effective in synchro-
nizing the network.

Consideration of this problem has both technological
and biological motivation. For example, as a technological
motivation, we consider a networked system in which
dynamical units (e.g., chaotic oscillators) are located on
autonomous moving platforms (nodes) and communicate
wirelessly. The signal received by each platform is the
weighted sum of the signals [represented by H�xj�] sent
from other platforms, where the weights represent the
spreading and attenuation of these signals along their
propagation paths (represented by Aij). If at each platform
i there is no available information on the individual loca-
tions, attenuations, etc., associated with the input from
other platforms, then the adaptation of a node to changes
in the network due to motion of the platforms must be
accomplished solely on the basis of the aggregate signal (2)
that it receives. In the biological context, we note that
synchronism is often observed in circumstances of chang-
ing environments and states of the considered organism
(e.g., the ability to synchronize is evidently evolved as an
organism develops, and persists with changes due to dis-
ease, etc.). In both the above technological example as well
as possible biological examples, in order to maintain over-
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all system synchronism, nodes must adjust the processing
of inputs they receive from the network based only on
aggregate information available to them. Furthermore, in
both the technological and biological contexts, we envision
that synchronous dynamics on which the node states xi�t�
evolve is typically much faster than the time scale over
which the network changes. Thus, we say that the network
changes ‘‘slowly’’ in time, and we will make use of this
supposed slowness in what follows. To emphasize this, we
will sometimes write the adjacency matrix as Aij�t� instead
of Aij. We consider network dynamical equations of the
following form,

 _x i�t��F�xi�t����i�t�si�t���H�xi�t��; i� 1;2; . . . ;N;

(4)

where the equation for the evolution of xi�t� in the absence
of coupling is _xi�t� � F�xi�t�� with F: Rn ! Rn, si�t� is
the input signal at node i defined in Eq. (2), and � is a
constant gain equal for all the nodes in the network.

A synchronous dynamical solution (3) exists for �i�t�
equal to

 �� i�t� � �
�X

j

Aij�t�: (5)

When the condition

 �i�t� � ��i�t� (6)

is satisfied, Eq. (4) can be rewritten as

 _x i�t� � F�xi�t��� �
X
j

Lij�t�H�xj�t��; (7)

where theN � N matrix L�t� � fLij�t�g is such that Lii �

�1 8i, Lij�t� � Aij�t�=
P
jAij�t�, for i � j and thus has the

property that the sum of the elements in each row is zero.
Thus, assuming synchronization, x1�t� � x2�t� � � � � �
xN�t� � xs�t�, the last term in (7) is identically zero and
the synchronization dynamics is governed by the same
dynamics as for an individual uncoupled system,

 _x s�t� � F�xs�t��: (8)

In this situation, the arguments of the master stability
function theory of Ref. [1] apply and the stability of the
synchronous evolution depends essentially on the choice of
an appropriate coupling �. When �i�t� is not given by (5),
then Eq. (7) does not in general admit a synchronous
solution.

In what follows we will attempt to program the time
evolution of �i�t� so that it tends to relax toward ��i�t�, and
we will proceed under the assumption that, for the chosen
value of �, the synchronized state is stable for �i � ��i. In
order to motivate our programming technique, we first
define a mean squared exponentially weighted synchroni-
zation error at each node i,

 

~� i�t� �
Z t

e���t�t
0�j�i�t

0�si�t
0� � �H�xi�t

0��j2dt0; (9)

where ��1 is the temporal extent over which the averaging
is performed. Thus when synchronization is achieved (i.e.,
xi � xs and �i � ��i for all i), we have that ~�i � 0 and
~�i > 0 otherwise. Hence we will attempt to program �i�t�
to minimize ~�i. This is greatly facilitated if we choose � so
that

 �s < ��1 < �N; (10)

where �s is the time scale on which the node dynamics
evolves [e.g., the time scale for the evolution of xi�t�], and
�N is the time scale on which the network evolves [i.e., the
time scale on which Aij�t� and hence ��i�t� change]. With
this assumption, �i�t0� in (9) can be replaced by �i�t� to
yield the following approximation to ~�i:

 �i�t� � �2
i �t�Bi�t� � 2��i�t�Ci�t� � �

2Di�t�; (11)

where

 Bi�t� �
Z t

e���t�t
0�s2
i �t
0�dt0; (12)

 Ci�t� �
Z t

e���t�t
0�si�t

0�H�xi�t
0��dt0; (13)

 Di�t� �
Z t

e���t�t
0��H�xi�t0��	2dt0: (14)

Since ~�i � 0 at synchronization and is positive otherwise,
one option is to program�i�t� so as to seek the minimum of
�i by the following gradient descent relaxation,

 

d�i�t�
dt

� ��
d�i

d�i
� �2���iBi � �Ci�; (15)

where � is a parameter that determines the relaxation time
scale and �i��i� may be viewed as a potential function for
the gradient flow (15). To eliminate the need for calculating
the integrals (12) and (13) at each time step, we note that Bi
and Ci satisfy the following first order differential equa-
tions:

 

dBi�t�
dt

� ��Bi � s2
i ;

dCi�t�
dt

� ��Ci � siH�xi�:

(16)

Thus our adaptive strategy is described by the set of
differential equations (4), (11), (15), and (16).

In order to test the above described strategy we have
performed a series of numerical experiments that we now
describe. In our initial experiments, we consider a random
network of N nodes and hkiN=2 links, where hki is the
network average degree. At t � 0 we assume that the
adjacency matrix is Aij�0� � Aji�0� � 1 if a link exists
between i and j, and Aij�0� � 0 otherwise. For t > 0 we
assume the following network evolution,
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 Aij�t� � Aij�0��1� �ij sin�!ijt�	; (17)

where the �ij are random numbers drawn from a uniform
distribution between 0 and 1 and the !ij are random num-
bers drawn from a uniform distribution between !min > 0
and !max >!min, where �N � �!max�

�1 is much longer
than the characteristic time scale of the dynamics at the
network nodes �s.

As an example, we consider a network of coupled
Rössler oscillators, xi � �xi1; xi2; xi3�

T and F�xi��
��xi2�xi3;xi1�0:165xi2;0:2��xi1�10�xi3	. We choose
the oscillators to be linearly coupled in the xi1 variable, i.e.,
H�x� � Hx, where H � �1 0 0; 0 0 0; 0 0 0	. We have
also investigated other choices for H�x� and obtained
similar results.

Here, for the sake of simplicity, we assume that the
dynamics of the adaptation process (15) is fast. Thus taking
�! 1, we have that �i�t� rapidly converges to
�Ci�t�=Bi�t�, where the dynamics of Bi�t� and Ci�t� are
given by (16), and in place of (11) we use

 �i � �
Ci�t�
Bi�t�

: (18)

We have found that the value of the parameter � as well
as the initial conditions on Ci and Bi can significantly
impact the network behavior. With respect to the initializa-
tion of Ci and Bi we emphasize that, while it may be
physically difficult to initialize the variables xi in a pre-
scribed way, in contrast, initializations of Bi and Ci can be
freely specified, because Bi and Ci are internal variables
that we use only in computing our adaptive changes.
Assuming that Aij�0� is known, we set Ci�0� � Bi�0��
�
P
jAij�0�	

�1 to satisfy (6). We would like to choose Bi�0�
in such a way that, if our system consisting of Eqs. (4),
(16), and (18) has attractors other than the desired syn-
chronism tracking solution [ �Aij�t� 
 Aij�t�], then these
other spurious attractors do not capture the orbit. To pro-
mote this we wish to choose the Bij�0� so that the initial
condition is likely to be in the basin of attraction of our
desired solution. To this end, we assume that we are in a
synchronized state and average the first of Eqs. (16) for
Bi�t� over the chaotic oscillations thus yielding Bi ’ hs2

i i.
Noting the definition (3) of si and our choice H�x� �
�x; 0; 0�T for our example, we have hs2

i i ’ hk
2ihx2

s1it, where
hk2i is the second moment of the network degree distribu-
tion and hx2

s1it denotes a time average of xs1�t� for the
synchronous chaotic dynamics, Eq. (8). Thus we choose

 Bi�0� � hk
2ihx2

s1it; (19)

which yields for the example in Fig. 1, Bi�0� 
 104.
As a first experiment, we have sought to track the

synchronous evolution for the evolving network, with the
adaptive strategy described above. We started from an
initial condition in which all the oscillators are in the
same state, xi1�0� � x0

1, xi2�0� � x0
2, x3

i �0� � x0
3, i �

1; . . . ; N, where x0 � �x0
1; x

0
2; x

0
3�
T is a randomly chosen

point belonging to the Rössler attractor and �i�0� �
��i�0�, i � 1; . . .N, with Bi�0� given by (19) at each node
i. We considered a network of N � 50 nodes and average
degree hki � 10. We took � � 2 so as to ensure the stabil-
ity of the synchronous evolution in the case where the Aij
are constant in time, Aij � Aij�0�. We assumed � �
1=�2�s�, where we took �s to be the time at which the
autocorrelation function of xs�t� obtained from numerical
solution of (8) becomes 0.5, �s ’ 0:7. The network topol-
ogy was evolved as in (17), with !min � 0:01 and !max �
0:02. Figure 1(a) shows superposed plots of the time evo-
lutions of xi1�t�, i � 1; . . . ; N from t � 0 to t � 100 for a
case in which adaptation was implemented. We see from
this figure that all the N � 50 solutions evolve almost
identically. Furthermore, their behavior is as described by
the solution of the uncoupled chaotic dynamics, Eq. (8). In
contrast, Fig. 1(b) shows the same example but for the case
in which adaption was not implemented [i.e., ��i�t� �
�i�0� for all time]. In this case a synchronized solution
obeying Eq. (8) is not attained, and after the network has
significantly evolved (t � 40) there is appreciable spread
among the xi at different network nodes.

For the above experiment we found that the results were
robust to changes in Bi�0� from its nominal value of 104

obtained from Eq. (19); e.g., using Bi�0� � 1 gave essen-
tially the same results. As we will see from our next
numerical experiments, this is not always the case.
Figure 1 shows that the proposed adaptive strategy tech-
nique is effective for tracking an initially synchronous
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FIG. 1. The plots show the time evolutions from t � 0 to t �
100 of xi1�t�, i � 1; . . . ; N, while the network topology evolves
according to (17) in the case where the adaptation (16) and (18)
was implemented (a) and in the case where it was not
implemented (b). Here the oscillators start synchronized, � �
1=�2�s�, � � 2. The network parameters are as follows: N � 50,
hki � 10.
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state. In what follows, we address the ‘‘global synchroni-
zation’’ problem for the network (4); i.e., we consider
initial conditions, which can be far from the synchroniza-
tion manifold (3). Indeed, in real situations it may often not
be feasible to initialize with near identical states xi�0� on
each node. In order to evaluate the effects of initial con-
ditions xi�0� that differ from node to node, we consider
initializing the network as follows,

 x0
i1 � x0

1 � c�1�ix; x0
i2 � x0

2 � c�2�iy;

x0
i3 � x0

3 � c�3j�izj;
(20)

where (x0
1; x

0
2; x

0
3) is a randomly chosen point on the Rössler

attractor; �ix �iy, and �iz are zero-mean independent ran-
dom numbers of unit variance drawn from a normal distri-
bution; �1 � 7:45, �2 � 7:08, �3 � 4:25 are the standard
deviations of the time evolutions of the states xs, ys, zs
from numerical solution of (8) (calculated over a long time
evolution); and c is a parameter characterizing the degree
to which the initial conditions vary from node to node. We
define an average synchronization error �Ex1

for the evolu-
tion of the variables x1i�t� (i � 1; 2; . . . ; N)

 

�E x1
�

1

N�t2 � t1��1

Z t2

t1

X
i

jxi1�t� � �xi1�t�jdt; (21)

where �xi1�i� � N�1 PN
i�1 xi1�t� and �1 � h�xs1 �

hxs1it�2i
1=2
t , where h� � �it indicates the time average and

the subscript s denotes evolution of x � �x1; x2; x3�
T in the

synchronous state [i.e., using dynamics from Eq. (8)]. As
shown by the dashed line in Fig. 2, obtained with Bi�0� ’
104, given by (19), we achieve good synchronization of the
evolving adaptive network. In order to see the effect of an
arbitrary less rational choice of Bi�0� we have repeated this
experiment using Bi�0� � 1. The solid line in Fig. 2 shows
�Ex1, with �t1; t2� � �500; 1000�, versus c, for Bi�0� � 1. It

is seen that as c increases above about 0.2, the network fails
to synchronize. In contrast, with Bi�0� from (19), synchro-
nization was achieved for any value of the parameter c

between 0 and 1, thus illustrating the impact of properly
choosing the initial Bi value. This is because when the node
states are not initialized closely enough, the network tra-
jectories may be attracted by another attractor of the dy-
namical system (4), (16), and (18), that is different from the
synchronous attractor (3).

Finally, we have also tested the robustness of our scheme
to deviations of the individual systems from identicality. To
this end, we replace F�xi� in Eq. (4) by Fi�xi� � ��xi2 �
xi3; xi1 � 0:165�1���i�xi2; 0:2� �xi1 � 10�xi3	, where
for each node i the parameter �i is chosen randomly with
uniform density in the interval [�1; 1] and repeat our
original experiment (the experiment resulting in Fig. 1).
The parameter � characterizes the degree of nonidentical-
ity of the node dynamical systems (� � 0 for Figs. 1 and
2). Our results show, for example, that for �< 0:2, the
synchronization error is less than 4%, i.e., �Ex1

& 0:04, thus
indicating that good results may still be obtained when the
coupled systems deviate from being precisely identical.

In conclusion, we have shown that an adaptive strategy
can be used for the tracking of synchronization of time
evolving network systems whose network evolution is
unknown at the nodes of the network. We have also eval-
uated the effects of variable initial conditions at the net-
work nodes, and observed that global synchronization may
be achieved if the initial conditions of the adaptive varia-
bles �Bi�0�; Ci�0�� are chosen appropriately, i.e., from the
basin of attraction of (4), (16), and (18). Preliminary
numerical experiments have shown the effectiveness of
our proposed strategy in yielding approximate synchroni-
zation also for networks of nonidentical systems.
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FIG. 2. �Ex1
calculated between t1 � 500 and t2 � 1000 vs c;

N � 100, hki � 20, � � 1=�2�s�, � � 2, Bi�0� � 1. The dashed
line represents �Ex1

vs c for the case Bi�0� � 3� 104.
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