
Controllable Coherent Population Transfers in Superconducting Qubits for Quantum Computing

L. F. Wei,1,2 J. R. Johansson,3 L. X. Cen,4 S. Ashhab,3,5 and Franco Nori1,3,5

1CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
2Laboratory of Quantum Opt-electronics, Southwest Jiaotong University, Chengdu 610031, China

3Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan
4Department of Physics, Sichuan University, Chengdu, 610064, China

5Center for Theoretical Physics, Physics Department, CSCS, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
(Received 22 September 2007; published 18 March 2008)

We propose an approach to coherently transfer populations between selected quantum states in one- and
two-qubit systems by using controllable Stark-chirped rapid adiabatic passages. These evolution-time
insensitive transfers, assisted by easily implementable single-qubit phase-shift operations, could serve as
elementary logic gates for quantum computing. Specifically, this proposal could be conveniently
demonstrated with existing Josephson phase qubits. Our proposal can find an immediate application in
the readout of these qubits. Indeed, the broken parity symmetries of the bound states in these artificial
atoms provide an efficient approach to design the required adiabatic pulses.
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Introduction.—The field of quantum computing is at-
tracting considerable experimental and theoretical atten-
tion. Usually, elementary logic gates in quantum comput-
ing networks are implemented using precisely designed
resonant pulses. The various fluctuations and operational
imperfections that exist in practice (e.g., the intensities of
the applied pulses and decoherence of the systems), how-
ever, limit these designs. For example, the usual �-pulse
driving for performing a single-qubit NOT gate requires
both a resonance condition and also a precise value of
the pulse area. Also, the difficulty of switching on/off
interbit couplings (see, e.g., [1]) strongly limits the precise
design of the required pulses for two-qubit gates.

Here we propose an approach to coherently transfer the
populations of qubit states by using Stark-chirped rapid
adiabatic passages (SCRAPs) [2]. As in the case of geo-
metric phases [3], these population transfers are insensitive
to the dynamical evolution times of the qubits, as long as
they are adiabatic. Thus, here it is not necessary to design
beforehand the exact durations of the applied pulses for
these transfers. This is a convenient feature that could
reduce the sensitivity of the gate fidelities to certain types
of fluctuations. Another convenient feature of our proposal
is that the phase factors related to the transfer durations
(which are important for the operation of quantum gates)
need only be known after the population transfer is com-
pleted, at which time they can be canceled using easily
implementable single-qubit phase-shift operations. There-
fore, depending on the nature of fluctuations in the system,
rapid adiabatic passages (RAPs) of populations could offer
an attractive approach to implementing high-fidelity
single-qubit NOT operations and two-qubit SWAP gates for
quantum computing. Also, the SCRAP-based quantum
computation proposed here is insensitive to the geometric
properties of the adiabatic passage paths. Thus, our ap-
proach for quantum computing is distinctly different from
both adiabatic quantum computation (where the system is

always kept in its ground state [4]) and holonomic quantum
computating (where implementations of quantum gates are
strongly related to the topological features of either adia-
batic or nonadiabatic evolution paths [5]).

Although other adiabatic passage (AP) techniques, such
as stimulated Raman APs (STIRAPs) [6], have already
been proposed to implement quantum gates [7], the present
SCRAP-based approach possesses certain advantages,
such as: (i) it advantageously utilizes dynamical Stark
shifts induced by the applied strong pulses (required to
enforce adiabatic evolutions) to produce the required de-
tuning chirps of the qubits, while in STIRAP these shifts
are unwanted and thus must be overcome for performing
robust resonant drivings; and (ii) it couples qubit levels
directly via either one- or multiphoton transitions, while in
the STIRAP approach auxiliary levels are required.

The key of SCRAP is how to produce time-dependent
detunings by chirping the qubit levels. For most natural
atomic or molecular systems, where each bound state
possesses a definite parity, the required detuning chirps
could be achieved by making use of the Stark effect (via
either real, but relatively weak, two-photon excitations of
the qubit levels [8] or certain virtual excitations to aux-
iliary bosonic modes [9]). Here we show that the break-
ing of parity symmetries in the bound states in current-
biased Josephson junctions (CBJJs) provides an ad-
vantage, because the desirable detuning chirps can be
produced by single-photon pulses. This is because all the
electric-dipole matrix elements could be nonzero in such
artificial ‘‘atoms’’ [10]. As a consequence, the SCRAP-
based quantum gates proposed here could be conveniently
demonstrated with driven phase qubits [11] generated by
CBJJs. In order to stress the analogy with atomic systems,
we will refer to the energy shifts of the CBJJ energy levels
generated by external pulses as Stark shifts.

Models.—Usually, single-qubit gates are implemented
by using coherent Rabi oscillations. The Hamiltonian of
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such a driven qubit reads H0�t� � !0�z=2� R�t��x, with
!0 being the eigenfrequency of the qubit and R�t� the
controllable coupling between the qubit states; �z and �x
are Pauli operators. If the qubit is driven resonantly, e.g.,
R�t� � ��t� cos�!0t�, then the qubit undergoes a rota-
tion Rx�t� � cos�A�t�=2� � i�x sin�A�t�=2�, with A�t� �R
t
0 ��t0�dt0. For realizing a single-qubit NOT gate, the pulse

area is required to be precisely designed as A�t� � �, since
the population of the target logic state P�t� � �1�
cosA�t��=2 is very sensitive to the pulse area A�t� [in this
example, we are assuming an initially empty target state].
Relaxing such a rigorous condition, we additionally chirp
the qubit’s eigenfrequency !0 by introducing a time-
dependent Stark shift ��t�. Therefore, the qubit evolves
under the time-dependent HamiltonianH00�t� � !0�z=2�
R�t��x � ��t��z=2, which becomes

 H1�t� �
1

2
0 ��t�

��t� 2��t�

� �
(1)

in the interaction picture. Under the condition

 

1

2

����������t�
d��t�
dt
���t�

d��t�
dt

�����������2�t���2�t��3=2; (2)

the driven qubit adiabatically evolves along two paths—
the instantaneous eigenstates j���t�i � cos���t��j0i �
sin���t��j1i and j���t�i � sin���t��j0i � cos���t��j1i, re-
spectively. These adiabatic evolutions could produce
arbitrary single-qubit gates. For example, a single detun-
ing pulse ��t� (without a Rabi pulse) is sufficient to
produce a phase-shift gate: Uz��� � exp�i�j1ih1j�, � �
�
R
�1
�1��t�dt. Combining the Rabi and detuning pulses

for changing the mixing angle ��t� � arctan���t�=��t��=2,
from ���1� � 0 to ���1� � �=2, another single-qubit
gate Ux � exp�i����� � exp�i����� [with �	 �
�
R
�1
�1�	�t�dt, �	�t� � ��t� 	

�����������������������������
�2�t� ��2�t�

p
] can be

adiabatically implemented:

 Ux:

(
j����1�i � j0i ���!j���t�i j����1�i � �ei��j1i;
j����1�i � j1i ���!j���t�i j����1�i � ei��j0i:

(3)

This is a single-qubit rotation that completely inverts the
populations of the qubit’s logic states and thus is equivalent
to the single-qubit NOT gate. Here the population transfer is
insensitive to the pulse duration and other details of the
pulse shape—there is no need to precisely design these
beforehand. Different durations for finishing these trans-
fers only induce different additional phases �	, which can
then be canceled by applying the phase-shift Uz���.

Similarly, the applied pulses are usually required to be
exactly designed for implementing two-qubit gates. For
example [12], for a typical two-qubit system described
by the XY-type Hamiltonian H12 �

P
i�1;2!i�

�i�
z =2�

K�t�
P
i�j�1;2�

�i�
��

�j�
� =2, with switchable real interbit-

coupling coefficient K�t�, the implementation of a two-
qubit SWAP gate requires that the interbit interaction time t
should be precisely set as

R
t
0 K�t

0�dt0 � � (when !1 �
!2). This difficulty could be overcome by introducing a

time-dependent dc driving to chirp the levels of one qubit.
In fact, we can add a Stark-shift term �2�t��

�2�
z =2 applied

to the second qubit and evolve the system via

 H2�t� �
1

2

��2�t� 0 0 0
0 ��2�t� K�t� 0
0 K�t� �2�t� 0
0 0 0 �2�t�

0BBB@
1CCCA: (4)

Three invariant subspaces; Re0 � fj00ig, Re1 � fj11ig,
and Re2 � fj01i; j10ig exist in the above driven dynamics.
Thus, the populations of states j00i and j11i are always
unchanged, while the evolution within the subspace Re2 is
determined by the reduced time-dependent Hamiltonian
(1) with ��t� and ��t� being replaced by K�t� and �2�t�,
respectively. Therefore, the APs determined by H2�t� pro-
duce an efficient two-qubit SWAP gate; the populations of
j00i and j11i remain unchanged, while the populations of
state j10i and j01i are exchanged. The passages are just
required to be adiabatic and again are insensitive to the
exact details of the applied pulses.

Figure 1 shows schematic diagrams of two single-qubit
SCRAPs. These designs could be similarly used to adia-
batically implement the two-qubit SWAP gate.

Demonstrations with driven Josephson phase qubits.—
In principle, the above generic proposal could be experi-
mentally demonstrated with various physical systems [2],
e.g., the gas-phase atoms and molecules, where SCRAPs
are experimentally feasible. Here, we propose a convenient
demonstration with solid-state Josephson junctions.

A CBJJ (see, e.g., [11]) biased by a time-independent
dc current Ib is described by ~H0 � p2=2m�U�Ib; ��.
Formally, such a CBJJ could be regarded as an artificial
‘‘atom,’’ with an effective mass m � CJ ~�0, where ~�0 

�0=2�, moving in a potential U�Ib; �� � �EJ�cos��
Ib�=I0�. Here, I0 and EJ � I0 � ~�0 are, respectively, the
critical current and the Josephson energy of the junction of
capacitance CJ. Under proper dc bias, e.g., Ib & I0, the
CBJJ has only a few bound states: the lowest two levels, j0i
and j1i, encode the qubit of eigenfrequency !10 � �E1 �
E0�=@. During the manipulations of the qubit, the third

FIG. 1 (color online). SCRAPs for inverting the qubit’s logic
states by certain pulse combinations: (left) a linear detuning
pulse ��t� � vat, combined with a constant Rabi pulse ��t� �
�a; and (right) a linear detuning pulse ��t� � vbt, assisted by a
Gaussian-shape Rabi pulse ��t� � �b exp��t2=T2

R�. Here, the
solid (black) lines are the expected adiabatic passage paths, and
the dashed (red) lines represent the unwanted Landau-Zener
tunneling paths.
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bound state j2i of energy E2 might be involved, as the
difference between E2 � E1 and E1 � E0 is relatively
small. Because of the broken mirror symmetry of the
potential U��� for �! ��, bound states of this artificial
atom lose their well-defined parities. As a consequence, all
the electric-dipole matrix elements �ij � hij�jji, i; j �
0; 1; 2, could be nonzero [10]. This is essentially different
from the situations in most natural atoms or molecules,
where all the bound states have well-defined parities and
the electric-dipole selection rule forbids transitions be-
tween states with the same parity. By making use of this
property, Fig. 2 describes a SCRAP with a single CBJJ by
only applying an amplitude-controlled dc pulse Idc�t� (to
slowly chirp the qubit’s transition frequency) and a micro-
wave pulse Iac�t� � A01�t� cos�!01t� (to couple the qubit
states). Under these two pulses, the Hamiltonian of the
driven CBJJ reads ~H1�t� � ~H0 � ~�0�Idc�t� � Iac�t���.
Neglecting leakage, we then get the desirable Hamilton-
ian (1) with ��t� � ~��t� � � ~�0Idc�t���11 � �00� and
��t� � ~��t� � � ~�0A01�t��01. For a natural atom or
molecule with �ii � 0, the present scheme for producing
a Stark shift cannot be applied.

For typical experimental parameters [11] (CJ � 4:3 pF,
I0 � 13:3 �A, and Ib � 0:9725I0), numerical calculations
show that the energy splittings of the lowest three bound
states in this CBJJ !10 � 5:98 GHz and !21 � 5:64 GHz.
The electric-dipole matrix elements between these states
are �00 � 1:4, �11 � 1:42, �22 � 1:450, �01 � 0:053,
�12 � 0:077, and �02 � �0:004. If the applied dc pulse
is a linear function of time [i.e., Idc�t� � v1t with v1

constant] and the coupling Rabi amplitude ��t� � �1 is
fixed, the above SCRAP reduces to the standard Landau-
Zener problem [13].

For a typical driving with v1 � 0:15 nA=ns and A01 �
1:25 nA, Fig. 2 shows the time evolutions of the popula-
tions in this three-level system during the designed
SCRAPs. The unwanted (but practically unavoidable)
near-resonant transition between the chirping levels j1i
and j2i (due to the small difference between !21 and

!10) has been considered. Figure 2 shows that during the
above passages the leakage to the third state j2i is suffi-
ciently small. Thus, the above proposal of performing the
desirable SCRAPs to implement single-qubit gates should
be experimentally robust.

The adiabatic manipulations proposed above could also
be utilized to read out the qubits. In the usual readout a-
pproach [11], the potential barrier is lowered fast to en-
hance the tunneling and subsequent detection of the logic
state j1i. Recently [14], a � pulse resonant with the j1i $
j2i transition was added to the readout sequence for im-
proved fidelity. The tunneling rate of the state j2i is sig-
nificantly higher than those of the qubit levels, and thus
could easily be detected. The readout scheme used in [14]
can be improved further by utilizing the above SCRAP by
combining the applied microwave pulse and the bias-
current ramp. The population of state j1i is then transferred
to state j2i with very high fidelity. In contrast to the above
APs for quantum logic operations, here the population
transfer for readout is not bidirectional, as the population
of the target state j2i is initially empty. The fidelity of such
a readout could be very high, as long as the relevant AP is
sufficiently fast compared to the qubit decoherence time.

SCRAPs could also be used to implement two-qubit
gates in Josephson phase qubits. With no loss of generality,
we consider a superconducting circuit [11] produced by
capacitively coupling two identical CBJJs. The SWAP gate
is typically performed by requiring that the two CBJJs be
biased identically (yielding the same level structures) and
the static interbit coupling between them reaches the maxi-
mal value K0. If one waits precisely for an interaction time
	 � �=2K0, then a two-qubit SWAP gate is produced [15].
In order to relax such exact constraints for the coupling
procedure, we propose adding a controllable dc current,
I�2�dc �t��v2t, applied to the second CBJJ. Thus one can
drive the circuit under Hamiltonian �H12�t��

P
k�1;2H0k�

~��2
0 p1p2= �Cm� ~�0I

�2�
dc �t��2. Here, the last term is the driv-

ing of the circuit, and the first termH0k � ~��2
0 p2

k=�2 �CJ� �
EJ cos�k � ~�0Ib�k is the Hamiltonian of the kth CBJJ
with a renormalized junction capacitance �CJ � CJ�1�

�, with 
 � Cm=�CJ � Cm�. The coupling between these
two CBJJs is described by the second term with �C�1

m �

=�CJ�1� 
�� being the effective coupling capacitance.
Suppose that the applied driving is not too strong, such
that the dynamics of each CBJJ is still safely limited within
the subspace ;k�fj0ki;j1ki;j2kig:

P2
l�0 jlkihlkj � 1. The

circuit consequently evolves within the total Hilbert
space ; � ;1 � ;2. Using the interaction picture defined
by the unitary operator U0�

Q
k�1;2 exp��it

P2
l�0 jlkihlkj�,

we can easily check that, for the dynamics of the present
circuit, three invariant subspaces (relating to the compu-
tational basis) exist: (i) Im1 � fj00ig corresponding to the
sub-Hamiltonian �H1�E00�t�j00ih00j with E00�t��
� ~�0I

�2�
dc �t��00� ~��2

0 p2
00= �Cm, pll0 � hlkjpkjl0ki, and �ll0 �

hlkj�kjl
0
ki; (ii) Im2 � fj01i; j10ig corresponding to the

−50 0 50
0

0.5

1

O
cc

up
at

io
n 

pr
ob

ab
ili

tie
s

t (ns)

P
0
(t)

P
1
(t)

P
2
(t)

FIG. 2 (color online). SCRAP-based population transfers in a
phase qubit. (Left) Manipulation scheme: CBJJ levels with
dashed chirped qubit energy splitting ��t� are coupled (solid
arrow) by a Rabi pulse ��t�. The dotted red arrow shows the
unwanted leakage transition between the chirping levels j1i and
j2i. (Right) Time evolutions Pj�t� of the occupation probabilities
of the lowest three levels jji (j � 0; 1; 2) in a CBJJ during the
SCRAPs for inverting the populations of the qubit logic states.
This shows that during the desirable SCRAPs the qubit leakage
is negligible.
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sub-Hamiltonian �H2�t� taking the form of Eq. (1) with
��t� � �� � 2 ~��2

0 p2
10= �Cm and ��t�� ���t�� ~�0I

�2�
dc �t�


��11��00�; and (iii) Im3 � fj02i � jai; j11i � jbi;
j20i � jcig corresponding to

 

�H 3�t� �
Ea�t� �abe�it# �ac

�baeit# Eb�t� �bce�it#

�ca �cbeit# Ec�t�

0@ 1A;
with Ea�t� � � ~�0I

�2�
dc �t��22 � ~��2

0 p00p22= �Cm, Eb�t� �
� ~�0I

�2�
dc �t��11 � ~��2

0 p2
11= �Cm, Ec�t� � � ~�0I

�2�
dc �t��00 �

~��2
0 p22p00= �Cm; �ab��ba��bc��cb� ~��2

0 p01p12=
�Cm, �ac � �ca � ~��2

0 p2
02= �Cm, and # � !10 �!21.

Under the APs for exchanging the populations of the states
j10i and j01i, we can easily see that the population of j00i
remains unchanged. Also, after the desired APs, the popu-
lation of the state j11i should also be unchanged. Indeed,
this is verified numerically in Fig. 3 for the typical parame-
ters 
 � 0:05 and v2 � 3:0 nA=ns. Therefore, the desir-
able two-qubit SWAP gate could also be effectively
produced by utilizing the proposed SCRAPs.

Discussions and conclusions.—By using SCRAPs, we
have shown that populations could be controllably trans-
ferred between selected quantum states, insensitive to the
details of the applied adiabatic pulses. Assisted by readily
implementable single-qubit phase-shift operations, these
adiabatic population transfers could be used to generate
universal logic gates for quantum computing. Experi-
mentally existing superconducting circuits were treated as
a specific example to demonstrate the proposed approach.

Like other RAPs, the adiabatic nature of the present
SCRAPs requires that the passages should be sufficiently
slow (compared to the usual Rabi oscillations) and fast
(compared to the decoherence times of the qubits).

Satisfying both conditions simultaneously does not pose
any serious difficulty with typical experimental parame-
ters. Indeed, as shown above, experimentally feasible APs
could be applied within tens of nanoseconds. This time
interval is significantly longer than the typical period of an
experimental Rabi oscillation, which usually does not ex-
ceed a few nanoseconds, and could be obviously shorter
than the typical decoherence times of existing qubits,
which might reach hundreds of nanoseconds, e.g., for the
phase qubits reported in [11].
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FIG. 3 (color online). SCRAPs within the invariant subspace
Im3 � fj02i; j11i; j20ig for the dynamics of two identical three-
level capacitively coupled CBJJs driven by an amplitude-
controllable dc pulse. (Left) Adiabatic energies and the desirable
AP path (the middle solid line with arrows): A! C1 ! C2 !
C3 ! B. (Right) Time evolutions of populations P��t�, � � 20,
11, 02, within the invariant subspace Im3 during the designed
SCRAPs for inverting the populations of j10i and j01i. It is
shown that the initial population of the j11i state (corresponding
to the A regime in the left figure) is adiabatically partly trans-
ferred to the two states j20i and j02i in the C1, C2, and C3

regimes, respectively. Note that the population of the state j11i
vanishes at t � 0 and completely returns after the passages.
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