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We report the development of the fully relativistic convergent close-coupling method based on the
solution of the Dirac equation. A complete square-integrable Dirac L-spinor basis is used to obtain a set of
target states spanning the target discrete and continuous positive- and negative-energy spectra. The present
implementation is for quasi-one-electron atoms whose electronic configuration corresponds to the first
column of the periodic table. By way of example, we consider elastic scattering of 7 eV electrons on the
ground state of cesium, where the full set of spin asymmetries (A, A,, A,,,) has been measured. Excellent

agreement with experiment is found.
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Over the last two decades it has been our goal to develop
a general theory for the description of electron collisions
with atoms and ions, for excitation and ionization pro-
cesses, whose validity is independent of the projectile
energy of interest. The convergent close-coupling (CCC)
method [1,2] was first developed for electron-hydrogen
scattering with the key ingredient being the usage of a
complete square-integrable (Laguerre) basis for the de-
scription of the target spectrum. This allowed for conver-
gence in the calculations to be examined simply by
increasing the basis size. The solution of the close-
coupling equations in momentum space allowed the treat-
ment of relatively large systems, which is vital in conver-
gence studies. Subsequently, the CCC method was
generalized to the calculation of electron scattering from
alkali atoms [3], helium [4], and alkali-earth atoms [5].
Though historically the close-coupling method was in-
tended for purely excitation processes, we showed how
the CCC method can also be used to describe ionizing
collisions [6-9].

The CCC method was developed as a completely non-
relativistic theory. This restricts its applicability to highly
energetic projectiles, highly charged targets, and spin-
dependent observables. The CCC method was applied with
considerable success to spin-averaged observables such
as cross sections, electron-impact coherence parameters,
and even exchange spin asymmetries (A,,,) for a number of
heavy atoms, such as cesium [10-12], barium [13], and
mercury [14]. However, the elastic spin asymmetries A,
and A, measured by Baum e al. [10] are identically zero in
CCC or any other nonrelativistic theory. Hence, these form
an ideal testing ground for the relativistic CCC (RCCC)
method.

There are few electron-atom theoretical methods that
follow the fully relativistic formulation [15-20]. The
most advanced of these is the Dirac R-matrix method
[15,16]. However, agreement with experiment is rather
mixed, with the omission of the ionization channels in the
close-coupling expansion likely to be contributing to the
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discrepancies with experiment. Extensive calculations of
electron-atom elastic scattering and excitations have been
performed using perturbative techniques [17,18]. These
calculations can provide a useful overview of collision pro-
cesses, but their region of validity is limited to high inci-
dent electron energies and their application to low and in-
termediate incident electron energies can lead to large
eITOrS.

The aim of this Letter is to demonstrate how the ideas of
the CCC method can be extended to take into account
relativistic effects fully ab initio. While the presented
formulation is general, we choose the e-Cs scattering
system as an example which allows us to discuss a number
of important computational details and perform detailed
comparison with experiment.

The key step in the formulation of the CCC method is
the diagonalization of the nonrelativistic Schrodinger
Hamiltonian of the target in a finite Laguerre basis. In
the case of the Dirac Hamiltonian, diagonalization proves
to be a significantly more complicated problem. First, the
spectrum of the Dirac Hamiltonian of a hydrogenlike atom
does not have a finite lower bound and consists of three
distinct energy intervals: continuous spectrum on (—oo,
—2mc?) corresponding to the negative-energy electrons
(positrons), a discrete spectrum on (—mc?, 0) containing
the target bound states, and the target continuum spectrum
on (0, 0); see Fig. 1. Here m is electron mass and c is speed
of light.

The absence of the lowest-energy state means that the
variational principle cannot be applied to the problem in
the same straightforward manner as is achieved in the
nonrelativistic case. Also, the choice of the basis proves
to be very important, as a simple generalization of the
nonrelativistic diagonalization techniques leads to appear-
ance of the so-called ““intruder” states [21] that carry no
physical meaning. This problem has been addressed by
Grant and Quiney [22,23], whose work we follow.

In analogy to the CCC method, RCCC calculations
model the Cs atom as a quasi-one-electron atom with one
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FIG. 1 (color online). A qualitative comparison of the Dirac
and Schrodinger target spectra and their discretization using
CCC and RCCC methods. The energy was shifted by —mc? to
facilitate comparison with CCC. Note that RCCC generally
yields a lower energy ground state and that there is the same
number of states with energy below —2mc? as above.

active electron above a Dirac-Fock core of a Cs™ ion. The
core orbitals are obtained from the relativistic atomic
structure GRASP package [24]. A phenomenological one-
electron core polarization potential [3] is added to take into
account more accurately the effect of the closed inert shells
on the active electron. The resulting Dirac equation for the
active electron wave function is

Hr¢(r) =[ca - p + pmc* + V(n]p(r) = Ed(r), (1)

where e and B are the Dirac matrices and p is the mo-
mentum operator. In what follows we will use atomic units:
m =1 and ¢ = 137. The potential V(r) describes the
interaction of the active electron with the Cs® ion as
described above.

The Cs atom wave function ¢(r) with relativistic angu-
lar momentum quantum number « and magnetic sublevel
m is written as [22]

— 1 d)ﬁK(r)XKm — 1 Zn Cﬁfﬁk(r)/\//cm
Pt = (o )= S S X )
2)

Here y,,, is a two-component coupled spin-orbit function,

L (r) and ¢3,(r) are the large and small components of
the radial wave function, and C% and C5 are expansion
coefficients. The fL, (r) and f3,(r) are the radial parts of
Dirac L spinors [22],

LIS(r) o (2AF)Ye M X (—(1 — 8,0)L27 A7)
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with “+” corresponding to the large component and ““—"
to the small component; L%y(2)\r) are the associated

Laguerre polynomials, y = +/«*> — (Z/c)?, and N, =
VK> + 2ny + n?. Dirac L spinors form a complete

square-integrable basis and are the relativistic analogues
of the Coulomb Sturmian (Laguerre) functions used in
formulation of the nonrelativistic CCC method.

The important feature of the expansion (2) is that
although the large and small components of the wave
function are expanded separately, the Dirac L spinors for
large and small components are not independent but satisfy
the following system of differential equations:

do Koo +<M+,\) S @)
r

nK nK
dr r

K

_N — —_

The consequence of these matching relations is that the
representation of the Dirac operator in an L-spinor basis
does not suffer from any variational problems. The Dirac
spectrum correctly separates into the positive- and
negative-energy branches shown in Fig. 1, and the correct
transition to the nonrelativistic limit is guaranteed for ¢ —
00,

For each value of k a standard eigenvalue problem for
expansion coefficients {C4, C5},n = 1,..., N can be for-
mulated by substitution of the expansion (2) into Dirac
Eq. (1). Note that for N L spinors used in expansion (2) the
size of the eigenvalue problem is 2N. The result of the
diagonalization is a set of 2N states {¢,} with N of them
describing Cs discrete and positive-energy states and N
states that provide a square-integrable discretization of the
negative-energy continuum; see Fig. 1. According to Dirac
[25] the negative-energy continuum is filled with electrons
and the Pauli exclusion principle prohibits decay to the
negative-energy continuum from bound and positive-
energy continuum parts of the spectrum. Excitation from
the negative-energy continuum results in creation of
electron-positron pairs. The energy required for such pro-
cesses (~2mc? = 1 MeV) is much higher than that nor-
mally considered in electron-atom collision studies.
Consequently, here we neglect the negative-energy contin-
uum states.

The relativistic formulation of scattering is similar to the
nonrelativistic case, and so we will concentrate mainly on
the differences. For the sake of clarity in the present paper
we use Dirac plane waves to describe the projectile elec-
tron. The generalization to (Coulomb) distorted waves has
been implemented in the RCCC computer code but will be
described elsewhere.

Dirac plane waves are solutions of the free Dirac
Hamiltonian and are given by [26]

1 ik-r
lkuby = U, Q) e, (6)

where k is momentum, w is spin magnetic number, b is
sign of energy, and U Z are four-component spinors. They
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satisfy the following orthogonality and completeness con-
dition:
UeablK @) = 8,85 8k — K, (7)

> [d%lk,ub){k,ubl =1, (8)

where 1 denotes the 4 X 4 unit matrix.
The spectral decomposition of the free Dirac Green’s
function is [26]

GE) =Y f dk(

ke p+)ku + |
E-E,

N lkp—Xku — |

E+E, )

€))

where relativistic energy E, = cvk*> + ¢2. Note the pres-
ence of an additional (““—"") term corresponding to the
negative-energy continuum.

The Dirac Hamiltonian describing total e-Cs system is
given by (with indexes 0 and 1 referring to the projectile
and target electron spaces, respectively)

H=HT+K0+V(FO)+1/|r0—r]|, (10)

where Hr is Hamiltonian of the Cs atom [see Eq. (1)], K is
the free Dirac Hamiltonian of the projectile electron, and
V(ry) is interaction potential of projectile electron with
Cs* ion as discussed earlier.

The set of square-integrable states {¢,},n = 1,..., N, is
used to perform close-coupling expansion of the total
scattering electron-target atom wave function. Each term
of the close-coupling expansion is antisymmetrized to
ensure that the Pauli principle is satisfied. The
Lippmann-Schwinger equation for the 7" matrix can be
obtained from the corresponding Dirac equation for the
total wave function in a standard manner [using relativistic
Green’s function (9)] with the result

T}Lﬁ(kfy k) = V;r,-+(kf, k;)
[d3kv;n+ kp )T (k, ;)

E—E, — E, +i0
N Vi-(ks, k)Tt (k k;
+z[ﬂfﬂf)m<>
n=1
V7+(kf’ki)

E—E, +E +i0
d3kvfn+(kf, T (k, k)
fre 1 En - Ek + 10

1D

le_l+(kfr kl) =

d3k Vf_yl_ (kf: k)Tn_1+(k) kl)
E—E, + E + 0

where

5 (k, k') = (kubd|TIK 11'b' ), (12)

V}?fl(k, k') = kubdi|Viku'd' ;)
1
= kubd|V(rg) + ———
|"0 - "1|
— (H = E)Py k' u'b' @), (13)

with Pj; denoting the space exchange operator.

This is considerably more complicated than in the CCC
method. The T matrix T,.;" (k, k;) describes transition to a
negative-energy continuum state. For a positive total en-
ergy E of the scattering system the Green’s function asso-
ciated with term T7T,."(k,k;) has no singularity
(E—E, + E;,>0;i.e., we assume here that the energies
of target bound states are much less than the electron rest
energy) and therefore it corresponds to closed states.
Hence, we drop all negative-energy continuum terms in
the Lippmann-Schwinger Eq. (11). For electron-atom or
ion scattering processes the error associated with this
approximation is negligible as the Green’s function for
the negative energy terms is of order 1/2mc?. The resulting
form of the Lippmann-Schwinger equation is then the
same as for the nonrelativistic case and involves only the
“++” matrix elements, and the calculations can proceed
as previously described [2].

Elastic scattering of polarized electrons from polarized
Cs atoms has been studied in a series of experiments [10].
The scattered electron intensities were measured for all
four possible combinations of relative polarization (with
respect to the scattering plane) of incident electron (up or
down) and target Cs atom (up or down). This allows
determination of the relative differential cross section
(DCS) for scattering of unpolarized electrons on Cs, as
well as three spin asymmetries describing scattering of
unpolarized electrons from polarized Cs atoms (A;), po-
larized electrons from unpolarized atoms (A,), and
antiparallel-parallel asymmetry (4,,,) for scattering of po-
larized electrons from polarized Cs atoms. Asymmetries
A; and A, are identically zero in nonrelativistic calcula-
tions and offer a sensitive test to account for relativistic
effects in theoretical models. We also note that all spin
asymmetries are zero when calculated in the first Born
approximation, thus also providing a test of the importance
of channel coupling in e-Cs scattering.

We have performed a series of calculations of e-Cs
scattering at 7 eV incident electron energies until conver-
gence in all of the parameters of interest has been obtained,
and present the results of just the largest (89 state) calcu-
lation in Fig. 2. Agreement with experiment is excellent for
all four parameters, though we note that the experimental
DCS data are relative and have been normalized to the
RCCC theory. Comparison with a number of previous
calculations for e-Cs elastic scattering is also presented.
Nonrelativistic CCC calculations [27] are in very good
agreement with the present results for the DCS and the
spin asymmetry A,,,, but are identically zero for A; and A,.
The 40-state Breit-Pauli R-matrix calculation [28] does not
give as good agreement with the DCS, A, and A,, but
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FIG. 2 (color online). Differential cross section and spin asym-
metries for elastic 7 eV electron scattering on Cs. Present
calculations (RCCC) are described in the text, Breit-Pauli
(BP40) R-matrix calculations are due to Bartschat and Fang
et al., [28], Dirac R-matrix (RMS8) calculations are due to
Baum et al. [29], and nonrelativistic CCC calculations are due
to Bartschat and Bray [27]. The measurements are due to Baum
et al. [10] and Gehenn and Reichert [30].

comparable with RCCC for A,,,,. The Dirac-based R-matrix
calculation, presented by Baum et al. [29] only for the spin
asymmetry parameters, shows better agreement with the
A; and A, parameters than A,,. These discrepancies in-
dicate the importance of having a method whose conver-
gence can be systematically verified.

In conclusion, we have developed a fully relativistic
CCC method and demonstrated its utility by considering
7 eV elastic electron scattering from cesium. The excellent
agreement of RCCC with the A; and A, spin asymmetries,
which are identically zero in the nonrelativistic CCC
method, indicates that the relativistic formalism has been
incorporated correctly while maintaining the important
channel-coupling effects. The new formalism considerably

extends our capacity to consider problems with high pro-
jectile energies, highly-charged or heavy targets and spin-
resolved phenomena. Extension of RCCC to quasi two-
electron targets is underway.

The authors would like to thank Harry Quiney for help-
ful discussions and Klaus Bartschat for sending his data in
electronic form. This work was supported by the
Australian Research Council. We are grateful for access
to the Australian Partnership for Advanced Computing and
its Western Australian node iVEC.

[1] 1. Bray and A.T. Stelbovics, Phys. Rev. Lett. 69, 53
(1992).

[2] I.Bray and A.T. Stelbovics, Phys. Rev. A 46, 6995 (1992).

[3] L. Bray, Phys. Rev. A 49, 1066 (1994).

[4] D.V. Fursa and I. Bray, Phys. Rev. A 52, 1279 (1995).

[5] D.V. Fursa and I. Bray, J. Phys. B 30, 5895 (1997).

[6] I. Bray and D. V. Fursa, Phys. Rev. A 54, 2991 (1996).

[7] I Bray and D. V. Fursa, Phys. Rev. Lett. 76, 2674 (1996).

[8] L. Bray, Phys. Rev. Lett. 89, 273201 (2002).

[9] A.T. Stelbovics, 1. Bray, D. V. Fursa, and K. Bartschat,
Phys. Rev. A 71, 052716 (2005).

[10] G.Baum, N. Pavlovic, B. Roth, K. Bartschat, Y. Fang, and
I. Bray, Phys. Rev. A 66, 022705 (2002).

[11] G. Baum, S. Forster, N. Pavlovic, B. Roth, K. Bartschat,
and I. Bray, Phys. Rev. A 70, 012707 (2004).

[12] D.S. Slaughter, V. Karaganov, M.J. Brunger, P.J.O.
Teubner, 1. Bray, and K. Bartschat, Phys. Rev. A 75,
062717 (2007).

[13] D.V. Fursa and I. Bray, Phys. Rev. A 59, 282 (1999).

[14] D.V. Fursa, I. Bray, and G. Lister, J. Phys. B 36, 4255
(2003).

[15] S. Ait-Tahar, I. P. Grant, and P. H. Norrington, Phys. Rev.
Lett. 79, 2955 (1997).

[16] J.-J. Chang, J. Phys. B 8, 2327 (1975).

[17] M.E. Ahmed, W. Ji, R.P. McEachran, and A.D. Stauffer,
J. Phys. B 40, 4119 (2007).

[18] V.Zeman, R.P. McEachran, and A. D. Stauffer, J. Phys. B
27, 3175 (1994).

[19] M.J. Vilkas and Y. Ishikawa, Phys. Rev. A 75, 062508
(2007).

[20] I.M. Savukov, Phys. Rev. Lett. 96, 073202 (2006).

[21] W. Kurtzelnigg, Int. J. Quantum Chem. 25, 107 (1984).

[22] L.P. Grant and H. M. Quiney, Phys. Rev. A 62, 022508
(2000).

[23] I.P. Grant and H. M. Quiney, Adv. At. Mol. Phys. 23, 37
(1987).

[24] K.G. Dyall, I.P. Grant, C.T. Johnson, F.P. Parpia, and
E.P. Plummer, Comput. Phys. Commun. 55, 425 (1989).

[25] P. A.M. Dirac, Proc. R. Soc. A 118, 351 (1928).

[26] R.H. Landau, Quantum Theory II: Second Course in
Quantum Theory (Wiley-Interscience, New York, 1989).

[27] K. Bartschat and I. Bray, Phys. Rev. A 54, 1723 (1996).

[28] K. Bartschat and Y. Fang, Phys. Rev. A 62, 052719 (2000).

[29] G. Baum, W. Raith, B. Roth, M. Tondera, K. Bartschat,
I. Bray, S. Ait-Tahar, I.P. Grant, and P. H. Norrington,
Phys. Rev. Lett. 82, 1128 (1999).

[30] W. Gehenn and E. Reichert, J. Phys. B 10, 3105 (1977).

113201-4



