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It is likely that the LHC will observe a color- and charge-neutral scalar whose decays are consistent
with those of the standard model (SM) Higgs boson. The Higgs interpretation of such a discovery is not
the only possibility. For example, electroweak symmetry breaking could be triggered by a spontaneously
broken, nearly conformal sector. The spectrum of states at the electroweak scale would then contain a
narrow scalar resonance, the pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-
boson-like properties. If the conformal sector is strongly coupled, this pseudodilaton may be the only new
state accessible at high energy colliders. We discuss the prospects for distinguishing this mode from a
minimal Higgs boson at the LHC and ILC. The main discriminants between the two scenarios are (i) cubic
self-interactions and (ii) a potential enhancement of couplings to massless SM gauge bosons.
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The LHC experiment at CERN will begin operations at
the end of this year. In the early stages of running, one of its
main priorities will be to either rule out or confirm the
minimal standard model mechanism of electroweak sym-
metry breaking (EWSB), generated by the expectation
value of an SU�2� doublet Higgs scalar field.

While there are some constraints on the minimal Higgs
picture, either from direct collider searches (e.g., the LEP
bound mH > 114 GeV), or from precision electroweak
physics, the Higgs sector of the standard model (SM) is
largely uncharted territory. In anticipation of the LHC, it is
important for particle theorists to thoroughly map out the
space of theories of EWSB and identify collider signals
that might be used to distinguish between different
scenarios.

In this Letter, we study the LHC signatures of a class of
theories in which EWSB at the scale v ’ 246 GeV is
triggered by the spontaneous breaking of scale symmetry
at an energy scale f � v [1]. Scenarios of this kind typi-
cally invole new strongly coupled, nearly conformal dy-
namics at a scale �CFT � 4�f which then feeds into an
EW sector composed of new heavy states with masses of
order �EW � 4�v. Examples of such theories can be real-
ized as 4D strongly coupled gauge theories, as in the
original models of walking technicolor [2], or via anti–
de Sitter/conformal field theory (CFT) correspondence as
Randall-Sundrum 5D warped geometries [3] with EWSB
through either Higgs VEVs vacuum expectation value or
boundary conditions [4]. It is important to note, however,
that EWSB through a nearly conformal sector need not
involve strong dynamics. A simple example is the minimal
Higgs model itself: in the absence of a Higgs sector the SM
becomes approximately scale invariant down to the QCD
scale. Thus, in addition to breaking EW gauge symmetry at
a scale v, the Higgs potential simultaneously breaks con-
formal invariance both spontaneously at the scale f � v,
and explictly, due to the presence of a Higgs mass term in
the potential.

While the scenarios described above generically predict
new heavy states with masses of order �EW � 1 TeV
associated with EWSB (whose presence is necessary,
e.g., to unitarize high energy scattering of longitudinal
EW gauge bosons), the detailed spectroscopy is in general
highly model dependent. In addition, such states may be
too broad to be individually resolved at the LHC.
Nevertheless, these theories always contain an electroweak
singlet scalar field ��x�, the dilaton mode, in their spec-
trum. This mode is simply the pseudo-Goldstone boson of
spontaneously broken (approximate) scale invariance. The
dilaton becomes massless in the limit in which conformal
symmetry is recovered. Therefore its mass is naturally
light, proportional to the scale f times the parameter that
controls deviations from exact scale invariance. A light,
narrow resonance is therefore a distinguishing feature of
new nearly conformal dynamics.

Since the minimal SM Higgs doublet is a weakly
coupled example of EWSB triggered by nearly scale in-
variant physics, a light Higgs boson itself can be identified
with the dilaton through the relation ��x� �

�����������
HyH
p

�x�.
From this point of view, the couplings of the Higgs boson
to the SM are simply a consequence of underlying approxi-
mate scale invariance (i.e., the soft Higgs theorems of [5]).
This observation, however, also indicates that differentiat-
ing new conformal physics from the minimal SM at col-
liders may be difficult.

Below, we use symmetry arguments to work out the
pseudodilaton couplings to the SM fields which arise
from an underlying conformal sector. These results lead
to a definite pattern of collider signals that can be con-
trasted with those of a minimal Higgs scenario. Briefly, we
find the following: Scale invariance implies that the tree-
level pseudodilaton couplings are obtained from those of
the Higgs boson by replacing the electroweak scale v with
the scale f of conformal symmetry breaking. At the loop
level, the dilaton has potentially enhanced couplings to
massless SM gauge bosons relative to those of a light
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Higgs boson. However, the precise values are model de-
pendent and do not constitute a clean method of distin-
guishing between models. Regardless, if f is close to v and
no other light states appear, it would be nearly impossible
to distinguish the new strong dynamics from the minimal
Higgs model. Finally, the dilaton self-couplings depend on
the dimension of operators that explicitly break the con-
formal symmetry, and this provides an opportunity to
differentiate the dilaton from the Higgs boson at the ILC.

Our setup (an expanded version of our results can be
found in [6]) is as follows: we adopt a framework with SM
gauge bosons and fermions as well as an electroweak
neutral scalar, the dilaton, whose mass is protected by
approximate scale invariance. All other states responsible
either for conformal or electroweak breaking are taken to
be roughly heavier than a scale �EW � 4�v. The interac-
tions among the light fields are described by a low-energy
effective Lagrangian with nonlinearly realized SU�2�L �
U�1�Y and (approximate) conformal invariance.

A simple way of incorporating the nonlinearly realized
scale invariance is to add a field ��x� that serves as a
conformal compensator. If one writes the original
Lagrangian in a basis of anomalous dimension eigenoper-
ators, L �

P
igi���Oi�x�, then under scale transforma-

tions x� ! e�x�, Oi�x� ! e�diOi�e
�x�. Assigning the

scale transformation law ��x� ! e���e�x�, we simply
need to make the replacement gi��� ! gi��

�
f��

�
f�

4�di , in
L. Here f � h�i is the order parameter for scale symmetry
breaking, determined by the dynamics of the underlying
strong sector. The Goldstone boson associated with con-
formal symmetry breaking is parameterized as ��x� �
fe��x�=f, which transforms nonlinearly under scale trans-
formations, �:��x�=f ! ��e�x�=f� �. However, a more
convenient parameterization for the fluctuations about the
VEV is vacuum expectation value ���x� � ��x� � f.

In our scenario, L above is the electroweak chiral
Lagrangian [7]. This theory provides a convenient
model-independent description of a strongly interacting
EWSB sector, including not only the tree-level couplings
of massive SM gauge bosons and fermions but also all
precision electroweak observables, which are encoded in
the coefficients of higher dimensional operators. In the
unitary gauge, the relevant couplings to the dilaton are
obtained by making the replacement v! v�=f in the
electroweak chiral theory. This gives,

 L �;SM �

�
2 ��
f
�

��2

f2

��
m2
WW

�
�W�� �

1

2
m2
ZZ�Z

�
�

�
��
f

X
 

m 
�  ; (1)

which is identical in form to the couplings of a minimal
Higgs boson.

In the limit of exact scale invariance � is derivatively
self-coupled. Ignoring for the time being terms that explic-
itly break the symmetry, self-interactions of the dilaton are
of the form, e.g., c4�@��@���2=�4���4, where the con-

stant c4 �O�1� depends on the details of the underlying
CFT. The inverse powers of � are necessary to ensure that
L� transforms correctly under scalings.

In addition, the theory may possess explicit sources of
scale symmetry breaking. For example, suppose that con-
formal invariance is broken by the addition of an operator
O�x� with scaling dimension �O � 4 to the Lagrangian,
LCFT ! LCFT � �OO�x�. It is straightforward to include
this pattern of symmetry breaking by the introduction of a
spurion field into the low-energy effective theory. This
spurion constrains the nonderivative interactions of ��x�
to be of the form

 V��� � �4
X1
n�0

cn��O�

�
�
f

�
n��O�4�

; (2)

where the coefficients cn � �nO depend on the dynamics of
the underlying CFT. By assumption, this dynamics must be
such that V��� is minimized at h�i � f with m2

� �

d2V�h�i�=d�2 > 0. In general, the coefficients cn depend
on the scaling dimension �O. We assume that the cn are
nonsingular in the limit �O ! 4.

It is not possible to make detailed predictions without
knowledge of the coefficients cn in V��� unless there exists
a small expansion parameter. Here we are interested in the
case where the explicit conformal breaking term above is
small. This can be either because the operator O is nearly
marginal (j�O � 4j 	 1), as is the case in walking techni-
color theories or RS models stabilized by the scenario of
[8], or because the coefficient �O is chosen to be small in
units of f, as in the case of the minimal Higgs model. If this
happens, it is possible to obtain definite expressions for the
dilaton self-couplings once the parameters m and f are
fixed. We find that the potential is V� ��� � 1

2m
2 ��2 � �

3! �
m2

f ��3 � 
 
 
 , where m2 	 f2 is proportional to the small
symmetry breaking parameter: m2=f2 / �O for �O 	 1
(in units of f) and �O arbitrary, or m2=f2 � j�O � 4j for
j�O � 4j 	 1 and �O of arbitrary size. The cubic coupling
is given by � � ��O � 1� �O��O� for �O 	 1, or � �
5�O�j�O � 4j� when j�O � 4j 	 1, and is in principle
a probe of the scaling dimension of the operator respon-
sible for scale symmetry breaking. We do not expect scale
symmetry breaking to occur if O�x� is an IR irrelevant
perturbation. This implies the bound � � 5 that is satu-
rated near marginality. In addition, the conformal algebra
together with unitarity implies � � 2. Moreover, for �O �
2 and �O 	 f2 this result reproduces the usual Higgs
trilinear coupling. Note that when j�O � 4j 	 1 the entire
potential for �, up to corrections of order ��O � 4�2, is
calculable: V���� �m2�4=16f2��4ln�=f�1
�O��O�
4�2. In addition, note that the assumption of scale invari-
ance ensures that our predictions for the lightness of � and
for the cubic coupling are stable against radiative correc-
tions due to SM loops.

In the SM, Higgs couplings to the top quark and the
massive gauge bosons induce the couplingsH�� andHgg.
The same mechanism induces the dilaton couplings ���

PRL 100, 111802 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
21 MARCH 2008

111802-2



and �gg. Because these processes are generated by loop
effects, these couplings are also sensitive to contributions
from heavy particles present in any extension of the SM.
Since these couplings are crucial for collider phenomenol-
ogy we derive them here and show that the dilaton coupling
to gluons and photons can be significantly enhanced under
very mild assumptions about high scale physics.

Let us begin by recalling the situation for the SM loop-
induced Higgs couplings to gluons. The logic is identical
for the couplings to two photons. For heavy particles,
defined as mi � mh, the Higgs boson couples to gluons
through an operator

 L hGG �
�s
8�

X
i

bi0
h
v
�Ga

���
2; (3)

where we have expanded ln�HyH=v2� � 1=2� h=v�

 
 
 and Ga

�� is the canonically normalized gluon field
strength. The sum runs over the heavy fields only and bi0
is the contribution of each heavy particle to the one-loop
QCD beta function, normalized as	i�g� � bi0g

3=16�2. As
expected, this result is independent of the heavy masses.
This well known result is modified by the loop contribu-
tions of other heavy particles which are not part of the SM.
In addition to inducing the term in Eq. (3), heavy states can
also generate new dimension-six operators of the form,
e.g., �s

4� chgH
yH�Ga

���
2, which depending on the size of

the coefficient chg can significantly modify the properties
of a light Higgs boson [9].

The dilaton couplings to massless gauge bosons can be

simply obtained by making the replacement 2m2
i

v2 HyH !
m2
i

f2 �2, in the derivation of the Higgs couplings. Again, one

can split the sum over all colored particles into sums over
light and heavy states, where the dividing scale is given by
the dilaton mass. Note that if one assumes that QCD is fully
embedded in the conformal sector, one can make UV
insensitive predictions, since by conformal invarianceP

lightb0 �
P

heavyb0 � 0. Thus the effective coupling at
one-loop is

 L �gg � �
�s
8�

blight
0

��
f
�Ga

���
2; (4)

where blight
0 � �11� 2

3nlight. The number of light fermi-
ons, nlight, is either nlight � 5 if the dilaton is lighter than
the top quark, or nlight � 6 otherwise. Equation (4) indi-
cates about a tenfold increase of the coupling strength
compared to that of the SM Higgs boson, which could
have profound consequences at the LHC. Unlike the
Higgs case, corrections to this result from higher dimen-
sion operators are negligible. For example, one might con-
sider operators such as g2

s
c�g
�4���2

D�Ga
��D�G��a. However,

such operators are suppressed by powers of m2=f2 	 1
relative to the terms coming from the conformal anomaly.

To summarize the discussion so far, the couplings of the
dilaton at energies below the scale 4�f are given by

 L � �
1

2
@� ��@� ���

1

2
m2 ��2 �

�
3!

m2

f
��3 �LSM;�

�
�EM
8�f

cEM ���F���2 �
�s

8�f
cG ���Ga

���
2; (5)

with LSM;� as in Eq. (1) and the coefficients cEM, cG were
discussed above. For example, if electromagnetic and
strong interactions are embedded in the conformal sector
at high scales, cEM � �17=9 if mW <m<mt and cEM �
�11=3 if m>mt, while cG � 11� 2nlight=3, where nlight

is the number of quarks lighter than the dilaton.
Given the similarity to minimal Higgs-boson physics, it

is possible to use existing studies of Higgs-boson proper-
ties at colliders to understand the physics of a light dilaton
as a function of the model parameters m, f, and the
couplings �, cEM, cG.

At LEP, the main production channel for dilaton pro-
duction is, as for the Higgs boson, associated production
with a virtual Z boson, e�e� ! HZ�. The cross section for
dilaton production is suppressed by a factor �v=f�2 relative
to the corresponding Higgs cross section at the same mass.
The LEP collaborations have combined their data to search
for the Higgs, including a search for Higgs particles with
an anomalous (non-SM) HZZ coupling [10]. This result is
immediately applicable to the bounds on the dilaton mass
and coupling.

Figure 10 in Ref. [10] summarizes the bound on the
dilaton mass and decay constant, where in our case 
2 �
�v=f�2. Roughly, the dilaton with mass 90 GeV<m<
110 GeV is excluded if �v=f�2 > 0:1 and with mass
12 GeV<m< 90 GeV it is excluded for �v=f�2 > 0:01.
These limits predominantly come from the b �b decay chan-
nel, which is kinematically suppressed below 12 GeV.
Other available decay channels have been employed for
very light masses [11]. Valuesm< 12 GeV are excluded if
�v=f�2 > 0:1; see Fig. 5 in Ref. [11].

The dilaton decay width into quarks and leptons is also
suppressed by the factor �v=f�2. However, this discrepancy
is not relevant for the LEP search as the branching ratios to
fermions remain unchanged. For �v=f�2 < 10�2, LEP is
not able to detect the dilaton irrespective of its mass, while
for �v=f�2 > 10�2 the suppression of the width is not
observable. In this latter case the dilaton decays very
promptly and does not have a displaced decay vertex.
Therefore its signatures are identical to Higgs-boson
signatures.

There are four important production channels for the
dilaton at hadron colliders: gluon fusion gg! �, associ-
ated production with vector bosons q �q! W=Z� �, vec-
tor boson fusion qq! qq� �, and associated production
with the top quark gg, q �q! t�t� �. The first process,
gg! �, is likely to be sensitive to new heavy states as
we discussed above. For example, assuming that QCD is
embedded in the conformal sector, we find a large enhance-
ment of the �gg coupling. This could easily overcome the
suppression factor v=f when compared with the gg! h
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cross section. The cross sections for the remaining pro-
cesses scale as �v=f�2 compared to the Higgs-boson pro-
duction cross sections. Higher order QCD corrections,
which are often sizable, do not alter the scaling of the cross
sections with �v=f�2 since each of these processes contains
just one vertex involving the dilaton. As we already dis-
cussed, the dominant branching ratios of the dilaton are the
same as for the Higgs boson so most of the Higgs-boson
search strategies can be applied directly. The only caveat is
in the mode �! ��. The width of this decay is likely to be
modified by physics beyond SM and scaling the results
obtained for the Higgs boson may not be reliable.

Given the simple scaling of the cross section we can
estimate the reach of LHC as a function of the dilaton mass
and the decay constant f. The statistical significance of the
Higgs signal at ATLAS has been presented, for example, in
Refs. [12,13]. The significance of the dilaton signal can be
obtained from the significance of the Higgs signal by
rescaling � S���

B
p �� � c2

G
v2

f2 �
S���
B
p �Higgs, where we assume that

the production cross section is dominated by the gluon
fusion process. It is easiest to discover a heavy dilaton
when the decays to WW and ZZ dominate. Very crudely,
with a 100 fb�1 of integrated luminosity a discovery is
possible when c2

G�v=f�
2 > 1=8 for m> 160 GeV. For a

lighter dilaton the statistical significance decreases with
mass, so if c2

G�v=f�
2 � 1=10 one may have to wait to

collect about 300 fb�1 worth of data for detection. For
details see Fig. 3.49 in Ref. [13].

In addition to discovery, the LHC will be able to mea-
sure the dilaton couplings to gauge bosons and the top
quark by measuring event rates in different channels.
Depending on the mass and the production channel one
expects a 10% to 30% accuracy for the extraction of the
couplings. The measurement of the cubic self coupling
seems hopeless at the LHC even if f � v and it only
gets harder for f > v [13].

A linear collider with
���
s
p
� 500–1000 GeV would pro-

vide an ideal environment for the study of the dilaton and
for distinguishing the dilaton from the Higgs boson. A
number of precision measurements can be performed.
See Ref. [13] for a comprehensive review.

First, the couplings to the gauge bosons and several
branching ratios can be measured at a one to few percent
level. In addition to determining f it would be a test of
whether or not different coupling are scaled by the univer-
sal factor v=f.

Second, form> 200 GeV and f � v, the dilaton would
be broad enough for its total width to be observed directly.
This would provide yet another check of the universal
rescaling of the couplings relative to the Higgs boson.
For f > v such a measurement is possible if m>
�f=v�2=3200 GeV since, in this mass range, the total width
increases as mass cubed. (The Higgs-boson mass reach of a
linear collider is approximately 0:8

���
s
p

.)
It would be fascinating if f � v to a degree of accuracy

that previously described coupling measurements would

not distinguish the dilaton from the Higgs boson. The cubic
coupling may then provide the only probe of how confor-
mal symmetry is broken. If the conformal symmetry is
broken by a nearly marginal operator we expect a slight
enhancement of the cubic coupling by a factor of 5=3. This
is large enough to be probed by the ILC if the dilaton is
light enough. The limiting factor for this measurement is
the small production cross section of Higgs-boson–dilaton
pairs. For f � v, we can adopt the results of studies on
Higgs pair production, which estimate that the cubic cou-
pling can be measured to within, e.g., 20% if m �
120 GeV and to within 30% if m � 140 GeV [13]. Note
that for f� v the error in the cubic coupling determina-
tion should be multiplied by an additional factor of �f=v�2

if the limitation to the measurement is assumed to be
purely statistical and by �f=v�4 under the assumption that
it is background dominated. Although neither of these
extremes is likely to capture the true experimental situ-
ation, it does indicate that for f significantly larger than v
the pair production signal is not an effective probe of
dilaton physics.
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