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Current experimental data on neutrino mixing are very well described by tribimaximal mixing.
Accordingly, any phenomenological parametrization of the Maki-Nakagawa-Sakata-Pontecorvo matrix
must build upon tribimaximal mixing. We propose one particularly natural parametrization, which we call
‘‘triminimal.’’ The three small deviations of the Particle Data Group angles from their tribimaximal
values, and the PDG phase, parametrize the triminimal mixing matrix. As an important example of the
utility of this new parametrization, we present the simple resulting expressions for the flavor-mixing
probabilities of atmospheric and astrophysical neutrinos. As no foreseeable experiment will be sensitive to
more than second order in the small parameters, we expand these flavor probabilities to second order.
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Neutrino physics has entered the precision era [1]. In the
next decade, the uncertainty in our knowledge of neutrino
masses and mixing angles will decrease considerably.
Many of the proposed models of neutrino mass and mixing
will be tested. The Maki-Nakagawa-Sakata-Pontecorvo
(MNSP) neutrino mixing matrix describes the unitary
transformation between the mass and flavor bases of the

neutrinos. In vacuum, it is given byU�j � h�jji, with � �
e, �, � and j � 1, 2, 3; i.e., rows are labeled from top to
bottom by the flavor indices, and columns are labeled left
to right by mass-eigenstate indices.

Three mixing angles and a phase comprise the conven-
tional parametrization of the vacuum mixing matrix, as
established by the Particle Data Group (PDG) [2]:

 U � R32��32�U
y
�R13��13�U�R21��21� �

c21c13 s21c13 s13e
�i�

�s21c32 � c21s32s13ei� c21c32 � s21s32s13ei� s32c13

s21s32 � c21c32s13e
i� �c21s32 � s21c32s13e

i� c32c13

0
B@

1
CA; (1)

where Rjk��jk� describes a rotation in the jk-plane through
angle �jk, U� � diag�ei�=2; 1; e�i�=2�, and sjk � sin�jk,
cjk � cos�jk. We have omitted two additional Majorana
phases, as they do not affect neutrino oscillations.

From Eq. (1), one gleans that the PDG mixing angles are
related to certain observable moduli of matrix elements as

 sin 2�13 � jUe3j
2; (2)

 sin 2�21 � jUe2j
2=�1� jUe3j

2�; (3)

 sin 2�32 � jU�3j
2=�1� jUe3j

2�: (4)

In the order listed, these important moduli are inferred
from terrestrial (long-baseline or reactor) data, solar data,
and atmospheric data. Finally, the CP-invariant of Jarlskog
is given by

 JCP � �ImfUe1U�3U�e3U
�
�1g: (5)

In terms of the PDG parametrization in Eq. (1), this is
JCP �

1
8 sin2�21 sin2�32 sin2�13 cos�13 sin�. Global 3-

flavor fits to data give the following (1�) and 3� ranges
for the PDG mixing angles [3]:

 sin 2�21 � 0:32��0:02��0:08
�0:06;

sin2�32 � 0:45��0:07��0:20
�0:13; sin2�13 < �0:02�0:050:

(6)

The central values of these inferred mixing angles are
quite consistent with the tribimaximal values [4], given
implicitly by sin2�21 �

1
3 , sin2�32 �

1
2 , and sin2�13 � 0.

The resulting angles are �32 �
�
4 rad � 45�, �21 �

sin�1
��������
1=3

p
� 0:6155 . . . rad � 35:2644 . . . �, and �13 � 0.

Explicitly, the tribimaximal mixing matrix is
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Tribimaximal is a good zeroth order approximation to
reality. However, we expect that even if some flavor sym-
metry is embedded in Nature which leads to zeroth order
tribimaximal mixing, in general, there will be deviations
from this scheme (see, for example, Ref. [5]).

In this Letter, we present and develop a parametrization
of the MNSP matrix which is completely general, but has
the tribimaximal matrix as its zeroth order basis. We call
the parametrization ‘‘triminimal.’’ To accommodate the
four independent parameters in U, we introduce as three
small quantities �jk, jk � 21, 32, 13, the deviations of the
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�jk from their tribimaximal values, and we retain the usual
CP-violating phase �. Tribimaximal mixing, given in
Eq. (7), is recovered in the limit of all three �jk � 0. In
other parametrizations, all three small parameters are typi-
cally coupled in the description of each �jk [6]. We illus-
trate the utility of the triminimal parametrization by
deriving a rather simple result for the flavor evolution of
neutrinos traveling large distances. This includes atmos-
pheric and astrophysical neutrinos. Our new result is pre-
sented as an expansion to second order in the three small
�jk.

The triminimal parametrization is given by
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with U� � R32��32�U
y
�R13��13�U�R21��21� (8)

chosen to have just the form of the PDG parametrization.
And just as in the PDG parametrization, U� is unitary, and
therefore so is triminimal UTMin. The simplicity of Eq. (8)
is a fortuitous result of the fact that it is the middle rotation
angle (�13) in the PDG parametrization that is set identi-
cally to zero in the tribimaximal scheme.

From Eq. (2)–(5) and (8), one obtains the neutrino
mixing observables in terms of the triminimal parameters.
The exact result and the expansion up to second order in
the �jk are
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 sin 2�32 �
1

2
� sin�32 cos�32 ’

1

2
� �32; (10)

 Ue3 � sin�13e�i�: (11)

One sees in the above expressions that the triminimal
parametrization maintains the simple parametrization of
Ue3. This is inevitable, for �13 and � are just the standard
PDG parameters �13 and �.

Being a 3-flavor quantity, JCP depends on all three �jk’s.
Its expansion is
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sin�
24
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At lowest order, JCP depends on just �13 sin�. JCP has no
dependence on �32 at first or second order.

In the above formulae, we have truncated the expansions
in powers of �jk at quadratic order since cubic order is
likely to be immeasurably small. The allowed ranges of the
small �jk are obtained from the �1��3� ranges of the large
oscillation angles in Eq. (6). The allowed ranges are

 � 0:08��0:04� 	 �21 	 �0:01�0:07; (13)

 � 0:18��0:10� 	 �32 	 �0:04�0:15; (14)

 j�13j 	 �0:14�0:23; (15)

while the CP-invariant lies in the range jJCPj 	
�0:03�0:05.

Let us emphasize two virtues of triminimality. With the
ordering of the (small-angle) rotations in Eq. (8) chosen in
accord with the PDG parametrization, (i) each �jk is di-
rectly interpretable as the deviation of the associated �32,
�13, or �21 from its tribimaximal value; due to the non-
commutivity of rotation matrices, this feature is not shared
with other parametrizations of the MNSP matrix [6], but
rather is unique to the triminimal parametrization; (ii) the
usual PDG result for Ue3, namely, Ue3 � sin�13e�i�, is
maintained.

From Eq. (8), it is straightforward to derive the expan-
sion of UTMin in powers of the three �jk and single � [7,8].
The result is

 

UTMin � UTBM �
�21���

6
p

���
2
p

�2 0���
2
p

1 0

�
���
2
p

�1 0

0
BB@

1
CCA� �32���

6
p

0 0 0

�1
���
2
p

�
���
3
p

�1
���
2
p ���

3
p

0
BB@

1
CCA� �13���

6
p

0 0 �
���
6
p
e�i����

2
p
ei� ei� 0���

2
p
ei� ei� 0

0
BB@

1
CCA

�
�2

21

2
���
6
p

2
���
2
p

0

�1
���
2
p

0

1 �
���
2
p

0

0
BB@

1
CCA� �2

32

2
���
6
p

0 0 0

�1
���
2
p ���

3
p

1 �
���
2
p ���

3
p

0
BB@

1
CCA� �2

13

2
���
6
p

2
���
2
p

0

0 0
���
3
p

0 0
���
3
p

0
BB@

1
CCA� �21�32���

6
p

0 0 0

�
���
2
p

�1 0

�
���
2
p

�1 0

0
BB@

1
CCA

�
�21�13ei����

6
p

0 0 0

�1
���
2
p

0

�1
���
2
p

0

0
BB@

1
CCA� �32�13ei����

6
p

0 0 0���
2
p

1 0

�
���
2
p

�1 0

0
BB@

1
CCA�O��3�: (16)
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In the remainder of this Letter, we present and explore the
triminimal parametrization of the phase-averaged mixing
that describes atmospheric and astrophysical neutrino fla-
vor propagation. We first introduce the matrix U of classi-
cal probabilities, defined by �U��j 
 jU�jj

2. The full
matrix of squared elements, through order O��2�, is

 U TMin �
1

6

8><
>:

4 2 0
1 2 3
1 2 3

0
@

1
A� E1

0 0 0
�1 1 0

1 �1 0

0
@

1
A

� E2

2 �2 0
�1 1 0
�1 1 0

0
@

1
A

� 2�32

0 0 0
1 2 �3
�1 �2 3

0
@

1
A

� �2
13

4 2 �6
�2 �1 3
�2 �1 3

0
@

1
A
9>=
>;; (17)

where E1 � 2
���
2
p
�13 cos�� 2�21��13 cos�� 2

���
2
p
�32�, and

E2 � 2
���
2
p
�21 � �2

21. That there are four independent terms
in (17) reflects the fact that there are four independent
moduli in the neutrino mixing matrix [9].

Some useful results follow immediately from this ma-
trix. For example, if neutrinos are unstable, only the light-
est neutrino mass eigenstate arrives at Earth from
cosmically-distant sources [10]. Flavor ratios at Earth for
the normal mass-hierarchy are Ue1:U�1:U�1, and for the
inverted mass-hierarchy are Ue3:U�3:U�3. These ratios
may be read off directly from the 1st and 3rd columns of
Eq. (17). As another example, neutrinos emanating from
the Sun are nearly pure 	2 mass states [11]; consequently,
their flavor ratios at Earth are mainly given by the 2nd
column of (17).

As is well known, the neutrino mixing probabilities for
phase-averaged propagation (appropriate when the oscil-
lation phase (�m2L=4E) is much larger than 1) are given
by

 P	�$	
 �
X
i

jU�ij
2jU
ij

2 � �UUT��
: (18)

The full result in terms of the �jk is
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where
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2
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2
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�21�32� 7�21�13 cos��;

C��2
32; �32�13 cos�; ��13 cos��2�

� 4�7�2
32� 2��13 cos��2�

���
2
p
�32�13 cos��:

The symmetric matrix in Eq. (19) contains the six explicit
flavor-mixing probabilities
 

P	e$	e �
1

18
�10� 4A�;

P	�$	� �
1

18
�7� A� B� C�;

P	�$	� �
1

18
�7� A� B� C�;

P	e$	� �
1

18
�4� 2A� B�;

P	e$	� �
1

18
�4� 2A� B�;

P	�$	� �
1

18
�7� A� C�:

(20)

At first sight, it seems remarkable that only three terms,
A, B, and C, have emerged to parametrize the six elements
P	�$	
 in �UUT�. However, this is inevitable, for there are
only three independent P	�$	
 as a result of the unitary
sum rules

P

P	�$	
 � 1.

Notice that since each row in (�UUT�) partitions a flavor
neutrino among all possible flavors, each row must sum to
unity at zeroth order in �jk, and to zero at each nonzero
order in �jk and cos�. Then, because of T-reversal invari-
ance, or equivalently, because (�UUT�) is a symmetric
matrix, each column must also sum to unity at zeroth order
in �jk, and sum to zero at each nonzero order in �jk and
cos�.
A and B are of indeterminate sign, whereas C, which

may be written as �2
���
2
p
�13 cos�� �32�

2 � 27�2
32, is man-

ifestly positive semidefinite. A and B contain terms linear
in �’s, as well as quadratic terms; C is purely quadratic in
�’s. For certain values of the �jk, the second order correc-
tions may dominate the first order corrections. Con-
sequently, C should not be neglected [12].

The dependences of flavor oscillation and flavor-mixing
probabilities on first and second order corrections will be
examined in considerable detail, for low and high energy
neutrinos, in [13]. Here, we present an interesting applica-
tion of the phase-averaged mixing matrix given in Eq. (19).
The most common source for atmospheric and astrophys-
ical neutrinos is thought to be pion production and decay.
The pion decay chain generates an initial neutrino flux
with flavor composition given approximately [14] by
�0
e:�

0
�:�0

� � 1:2:0 for the neutrino fluxes. According to
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Eq. (19), the fluxes �� arriving at Earth have a flavor ratio
of
 

�e:��:���1�
1

18
�2B�:1�

1

18
�B�2C�:1�

1

18
�B�2C�:

(21)

Violation of 	� $ 	� symmetry, exact with tribimaximal
mixing, is directly assessed via the flavor ratio

 

��

��
� 1�

2

9
C�O��3�: (22)

From this result, we may infer two lessons: C � 0, so we
learn that �� � �� is an inevitable consequence for pion-
produced, astrophysical neutrinos; and we see an explicit
example where the second order correction dominates over
the first order correction (exactly zero in this case). The
triminimal parametrization and expansion has made this
result transparent.

In summary, we have presented the triminimal parame-
trization of the MNSP matrix. Three small parameters
�jk � �jk � ��jk�TBM � 1, each equal to the deviation of
one of the measured quantities �jk from its tribimaximal
value, plus the usual CP-violating phase �, comprise the
parametrization. The triminimal parametrization leads to
simple formulas for neutrino flavor mixing. The proposed
parametrization in Eq. (8), the expansions in (16), (17), and
(19), and the mixing probabilities in (20) are the main
results of this Letter. Simple properties of the triminimal
parametrization are not shared by other parametrizations.
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Note added.—As this Letter was being written, a very
similar proposal for parametrization was posted on the
ArXiv [15]. There, the utility of triminimal parameters
for terrestrial flavor oscillations was emphasized; here,
we emphasize the utility for phase-averaged atmospheric
and astrophysical flavor mixing. After this Letter was
written, we were made aware of some earlier but different
parametrizations of ‘‘almost tribimaximal’’ mixing matri-
ces [16].
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