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Einstein’s theory of general relativity contains a universal value of the Planck mass. However, one may
envisage that in alternative theories of gravity the effective value of the Planck mass (or Newton’s
constant), which quantifies the coupling of matter to metric perturbations, can run on the cosmological-
horizon scale. In this Letter, we study the consequences of a glitch in the Planck mass from subhorizon to
superhorizon scales. We show that current cosmological observations severely constrain this glitch to less
than 1.2%.
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The Einstein theory of gravity (or general relativity) is
among the most successful theories in physics. Despite its
simple mathematical structure, and having only a single
constant, it has been successful in explaining the cosmo-
logical observations on the horizon scale (�1025–28 cm),
down to the planetary or lunar dynamics on solar system
scales (�109–15 cm), and even laboratory tests of the in-
verse square law on the submillimeter scales (see [1] for an
overview).

Such tests severely constrain alternatives to the Einstein
theory. Nevertheless, deviations from Einstein gravity are
expected on theoretical grounds, because it is a classical
theory. While renormalization group studies suggest that it
remains a good approximation at high energies [2], the
Planck mass becomes scale dependent. Further corrections
might be introduced in more complete theories of gravity,
such as string theory.

Deviations from Einstein gravity have also been sug-
gested on purely phenomenological grounds, in particular,
to explain the rotation curves of galaxies (as a replacement
for dark matter) [3–5], or the discovery of the apparent
acceleration of cosmic expansion (as a replacement for
dark energy or cosmological constant) [6,7]. However,
the evidence for any such deviation (rather than simply
exotic matter or energy components), is far from
conclusive.

A customary way to quantify deviations from Einstein
gravity on small scales and in the weak field limit is
through introducing a Yukawa fifth force modification to
the inverse square law, where the gravitational potential
energy takes the form

 V�r� � �G
m1m2

r
�1� �e�r=��; (1)

whereG is Newton’s constant,m1 andm2 are the masses of
(pointlike) gravitating objects, while � and � quantify the
strength and the scale of the new interaction, respectively.

In this model, the effective Newton’s constant smoothly
goes from G on large scales (r� �) to G�1� �� on small
scales (r� �). Current experimental and observational
constraints severely limit � in the range 10�1 < �<
1016 cm (see [1] for an overview), and even on scales of
�� 1025 cm [8].

In this Letter, we investigate the possibility of a similar
glitch in Newton’s constant (or Planck mass) on the scale
of the cosmological horizon, or the Hubble radius (��
c=H� 1028 cm). In our case, the scale � will not be a
physical constant of the theory, but rather an emergent
scale in the theory, as a consequence of an effective change
in the background geometry, from flat Minkowski space on
small scales, to the expanding Friedmann-Robertson-
Walker background on large scales.

We start by defining an effective Planck mass, and then
give a few examples of theories which contain a glitch in
their effective Planck masses on the horizon scale. We will
then investigate the cosmological consequences of such a
glitch for structure formation, and the cosmic microwave
background, and provide a limit based on current cosmo-
logical observations.

The Planck mass Mp quantifies the strength of coupling
between the space-time metric and the energy-momentum
of matter in the Universe. In terms of the Einstein equation:

 G�
� � M�2

p T�� ; (2)

where G�
� and T�� are the Einstein and the total energy-

momentum tensors, respectively. Notice that in our nota-
tion, Mp � �8�G��1=2 ’ 2:44	 1018 GeV, where G is
Newton’s gravitational constant, and we have used natural
units (@ � c � 1).

While G (and Mp) are true constants in Einstein’s the-
ory, other theories of gravity may predict a time- and/or
space-dependent G, as do, e.g., scalar-tensor theories [9–
12]. In other words, possible deviations from Einstein
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gravity, or alternatively, other energy components that are
not accounted for in the total energy-momentum tensor
T��, may lead to an effective (or dressed) Planck mass that
could run with time and/or the energy or length scale of the
interactions. A possible definition for an effective Planck
mass may come by perturbing the Einstein constraint (or
G0

0) equation:

 M�2
p;eff 
 �G0

0=�T
0
0 ; (3)

which reduces to the Poisson equation around a Minkowski
background (or on subhorizon scales). However, Eq. (3)
can mix different scales, as it involves the ratio of two
variable functions. Moreover, this definition may become
ill defined if �T0

0 crosses zero. Instead, we are going to
adopt a more practical definition:

 M�2
p;eff�jkj� 


h�G0
0;k�T

0�
0;ki

h�T0
0;k�T

0�
0;ki

; (4)

where �T0
0;k and �G0

0;k are the spatial Fourier transforms of
�T0

0 and �G0
0 on a given spatial hypersurface, and ‘‘h i’’

represent ensemble averages.
While this definition has the benefit of separating differ-

ent physical scales, we have introduced an explicit gauge
dependence through the choice of a particular spatial hy-
persurface. On small (subhorizon) scales (k� H), this
gauge dependence is not important, as Eq. (3) reduces to
the Poisson equation, and we recover Newtonian gravity. In
other words, the difference between Mp;eff in different
(physical) gauges is ��k=H��2, on subhorizon scales.

On superhorizon scales (k� H), gauge transformations
can change the effective Planck mass only if the Planck
mass associated with the background expansion is different
from the one associated with the perturbations, i.e., as long
as

 M�2
p;IR �

_G0
0

_T0
0

�
�G0

0

�T0
0

; (5)

the effective Planck mass is gauge invariant on superhor-
izon scales. This condition can naturally result from the
assumption of adiabatic initial conditions, which asserts
that, up to a time shift, causally disconnected patches of the
Universe experience identical histories. Therefore, for
adiabatic initial conditions, the gauge dependence of our
definition of the effective Planck mass may only become
important as modes cross the horizon.

From here on, we will refer to the cosmological subhor-
izon (k� H) and superhorizon (k� H) scales as the UV
and IR scales, respectively, which have their respective
values of the effective Planck mass, Mp;UV and Mp;IR. In
the language of Eq. (1), the UV-IR mismatch can be
parametrized by the dimensionless � parameter:

 M2
p;IR � M2

p;UV�1� ��: (6)

As an example, let us consider the quadratic Cuscuton
action [13]:

 SQ �
Z
d4x

�������
�g
p

�
�2

����������������������
j@�’@�’j

q
�

1

2
m2’2

�
; (7)

where ’ is a scalar field, and � and m are constants of the
theory with the dimensions of energy.

If we consider Cuscuton as a part of the gravitational
action (and so do not include it in the energy-momentum
tensor), the effective Planck mass takes the form

 M�2
p;eff�k� �

��Q � ��m
��m

; (8)

where ��Q and ��m are the energy density perturbations
of Cuscuton and ordinary matter, respectively. Using the
solution to the field equation in the longitudinal gauge,
obtained in [14], we find that

 M2
p;eff ’ M

2
p;UV �

3�4

2m2

�
1�

k2

3H2

�
�1
�

1�
k2

3 _H

�
�1
; (9)

to the lowest order in �, in a flat matter-dominated uni-
verse. As we noted above, the exact k dependence ofMp;eff

will depend on the choice of gauge, but the IR limit of the
effective Planck mass,

 M2
p;IR � M2

p;UV �
3�4

2m2 ; (10)

is set by the Friedmann equation [13], and is thus gauge
invariant [15].

A very similar behavior can be seen in the dynamics of a
canonical scalar (or quintessence) field with a simple ex-
ponential potential [16]: V�’� � M4

p exp���’=Mp�. For a
fixed background equation of state, the energy density of
the field, asymptotically, reaches a constant fraction of the
energy density of the Universe. In particular, for a flat
matter-dominated cosmology, this fraction is �’ �

3��2, which translates to a glitch in the effective Planck
mass on the horizon scale:

 M2
p;IR � M2

p;UV�1� 3��2�; (11)

as quintessence does not cluster on subhorizon scales, and
so Mp;eff reaches its fundamental value on small scales.

A third example for models that lead to a similar mis-
match between the IR and UV effective Planck masses is
‘‘Einstein-aether’’ theory, where the ‘‘aether’’ is a Lorentz-
violating, fixed-norm, timelike vector field [17,18]. The
rescaling of Newton’s constant induced by such a vector
field has been studied, e.g., by Carroll and Lim [19]. In
their notation, the Lagrangian for the vector field u� is
given by
 

Lu � �	1r
�u
r�u
 � 	2�r�u

��2 � 	3r

u�r�u


� �u�u�u� �m2
u�; (12)

where mu is the norm of the vector field, �u is a Lagrange
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multiplier, and 	i’s are dimensionless constants of the
theory. The coupling of u� to the metric then renormalizes
both the IR and UV values of the effective Planck mass, so
that

 M2
p;IR � M2

p;UV � �2	1 � 3	2 � 	3�m2
u: (13)

Unlike the two scalar field models discussed before, the
gravitational force is suppressed on large (superhorizon)
scales by the Lorentz-violating vector field [19].

We will next look at the observational consequences of a
possible glitch between the UV and IR effective Planck
masses. The Hubble expansion rate in a flat homogenous
cosmology is set by the Friedmann equation:

 H2 � �tot=3M2
p;IR: (14)

As the present-day cosmic density �tot is dominated by
dark matter and dark energy, which are only seen through
their gravitational effects, there is no way to find Mp;IR

through measuring the present-day Hubble constant.
However, the energy density in the radiation era is domi-
nated by photons and neutrinos and therefore fixed by the
cosmic microwave background (CMB) temperature (T �
2:728� 0:004 K [20]). Constraints on the expansion rate
during the radiation era (at T � 0:1 MeV) then come from
comparing the big bang nucleosynthesis predictions with
the cosmological observations of the light element abun-
dances, which correspondingly constrain the running of the
Planck mass: � � 0:0� 0:2 (95% C.L.) [21].

More interesting constraints can come from the study of
cosmological perturbations on small scales. Combining the
continuity and Poisson equations with Newton’s 2nd law
yields

 

��� 2H _� �
��m

2M2
p;UV

�; (15)

for the linear matter overdensity perturbations �
(���m= ��m) on small scales. Substituting the definition
of � [Eq. (6)] for M2

p;UV and using the Friedmann equation
[Eq. (14)] in the matter-dominated era (when H � 2=3t),
this can be easily solved. For �� 1, the growing mode
behaves as � / t2=3��2=5�� ) � / t�2=5��, where � is the
Newtonian (or longitudinal metric) potential.

Perturbation modes that are inside the horizon at the
redshift of matter-radiation equality zeq ’ 3400 will then
all experience the same amount of suppression or enhance-
ment during the matter era. Since the scale factor grows as
t2=3, this suppression or enhancement is roughly by a factor
of z3�=5

eq ’ 1� 5�. For the angular spectrum of CMB
anisotropies, this will result in a small change in the power
on small scales, and also in a change of the contribution
from the integrated Sachs-Wolfe effect, as a result of the
decaying or growing Newtonian potential [22]. For �> 0,
there will be less power on the large scale CMB power
spectrum, whereas a negative � will lead to an increase of

power. Correspondingly, the acoustic peak of the CMB
power spectrum will be slightly shifted, due to the change
in the cosmic expansion history (see Fig. 2 in [14], in
which �Q � ��). We compute the constraints on �
from the CMB using a modified version of CMBEASY

[23] for the quadratic Cuscuton model (see [14] for de-
tails). We find that the 3-yr CMB power spectrum of the
Wilkinson Microwave Anisotropy Probe (WMAP) [24]
constrains � to �0:005� 0:040 (at 95% C.L.).

The amplitude of a UV/IR glitch can also be constrained
through its impact on structure formation, and, in particu-
lar, through the change in the amplitude of the matter
power spectrum (in comparison to the CMB power) on
small scales at late times. In addition, the factor of sup-
pression or enhancement (depending on the sign of �) of
different modes depends on the time when they enter the
horizon, as we have seen above. As a result, the cold dark
matter power spectrum will also be tilted between the
equality and present-day horizon scales.

To quantify these effects, we use the latest data from the
distribution of luminous red galaxies from the Sloan
Digital Sky Survey [25] (marginalizing over bias). We
also include constraints on the cold dark matter power
spectrum from observations of the Lyman-� forest [26].
Even though these data extend into the mildly nonlinear
regime of the power spectrum, we expect nonlinear effects
(of a nonvanishing �) to be of little importance here, in
particular, because the bounds on � are already rather tight
from CMB alone. Adding the results from supernovae Ia
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FIG. 1 (color online). Top: Observational constraints on the
UV/IR Planck mass mismatch parameter � from 3 years of
WMAP data alone [24] (red, dashed line), and our compilation
(see the text) of cosmological observations (black straight line).
Bottom: Transition between the IR and UV regimes for the
effective Planck mass (in units of Mp;UV) defined in Eq. (8)
for the quadratic Cuscuton with � � �0:05 (red, solid line). The
transition for a canonical scalar field model (c2

s � 1) is depicted
in green (dashed line). For c2

s * 10, the transitions virtually
coincide with the quadratic Cuscuton (for which c2

s � 1).
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observations [27] as well as the observation of the baryon
acoustic oscillations [28], and the data from 3 years of
WMAP [24], we find the UV/IR mismatch parameter � to
be tightly constrained to �0:004� 0:021 (95% C.L.) by
our complete set of current observational data (see Fig. 1).

One may wonder if our constraints on � may depend on
the specific model that yields the running of the effective
Planck mass. Figure 1 compares the UV-IR transition of
M2
p;eff (in longitudinal gauge) for the quadratic Cuscuton

and the exponential scalar field models in the matter era.
The transition for the canonical scalar field model with
c2
s � 1 is shifted to slightly smaller scales by �30%.

However, the bounds on � are only slightly relaxed,
namely, to �0:004� 0:024 at the 95% C.L. Therefore,
we conclude that the constraints on � are insensitive to
the details of UV/IR transition, since most of the observ-
able consequences of the mismatch occur on small sub-
horizon scales.

What about an arbitrary redshift evolution of the running
factor ��z�? While this is in principle possible, it would
require introducing an ad hoc macroscopic scale (coinci-
dent with the present-day horizon) into the theory. In lieu
of any such scale, the cosmological horizon is the only
macroscopic scale in the problem that could control the
running of gravitational coupling constants. Therefore, a
constant � is the only natural result of a nontrivial micro-
scopic physics in the gravity theory.

To summarize, in this Letter, we have studied the run-
ning of the Planck mass (or Newton’s constant) on the
cosmological-horizon scale, as a possible modification of
Einstein gravity. We considered observable consequences
of this running and found out that any mismatch between
UV and IR Planck masses (Newton’s constants) is severely
constrained to less than 1.2% (2.4%) at the 95% C.L. While
future cosmological observations are likely to strengthen
this bound by an order of magnitude over the next decade,
the expected magnitude of such a running or glitch in well-
motivated extensions to Einstein gravity is yet to be
determined.
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