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We analyze the distribution of secure keys using quantum cryptography based on the continuous
variable degree of freedom of entangled photon pairs. We derive the information capacity of a scheme
based on the spatial entanglement of photons from a realistic source, and show that the standard measures
of security known for quadrature-based continuous variable quantum cryptography (CV-QKD) are
inadequate. A specific simple eavesdropping attack is analyzed to illuminate how secret information
may be distilled well beyond the bounds of the usual CV-QKD measures.
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The distribution of secret information via optical chan-
nels, e.g., quantum key distribution (QKD), provides an
important example of the technological capability of quan-
tum correlations. The QKD protocol proposed by Bennett
and Brassard [1] and its large collection of variations [2],
including QKDs using nonorthogonal states [3] and en-
tangled photons [4], employ single photons or photon pairs
to ensure secure information transfer between the source
(Alice) and receiver (Bob). The quantum information as-
sociated with the single-photon states in these schemes is
encoded as dichotomic variables, e.g., in the polarization
or relative phases of single-photon superposition states [5].
Thus, the maximum achievable information transfer rate is
intrinsically limited to 1 bit per photon. A newer develop-
ment of QKD utilizes continuous variable (CV) multipho-
ton systems [6—8] where the amplitude and phase quadra-
tures of coherent states [9,10] or squeezed states [11,12]
serve as the information carriers. CV-QKD systems poten-
tially enable higher key distribution rates. Recently, single-
photon CV-QKD employing the position and momentum
observables has been suggested as a means to increase the
information transfer rate by coding more than 1 bit per
photon. Compared to quadrature-based CV-QKD, single-
photon CV-QKD eliminates the local oscillators required
for homodyne detection and, as we will show, decouples
the channel loss from the quantum correlations. Experi-
mental implementations have demonstrated the feasibility
of these schemes by utilizing the spatial freedom of single
photons [13] or entangled photon pairs generated by para-
metric down-conversion (PDC) [14,15]. Yet, the security of
such schemes has not been analyzed and, as we show here,
this is not a trivial extension of either BB84 or the conven-
tional CV-QKD security proofs.

In this Letter, we evaluate the potential of the spatial
properties of PDC for QKD by considering a realistic PDC
source as well as practical detectors and a lossy quantum
channel. The analysis here can also be applied to CV-QKD
by employing the correlations of time-frequency entangled
photon pairs [16]. Spatial correlations are, however, easier
to manipulate with current technology. In our analysis we
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derive the mutual information of the communicating par-
ties from measurable position-momentum correlations of
PDC states and bound the information of a potential eaves-
dropper (Eve) by analyzing detected photocount statistics.
Our results lie in the region between conventional dicho-
tomic and continuous variable QKD and highlight the
differences between these alternative approaches in terms
of the experimental imperfections corrupting the secrecy of
the key exchange. Our security analysis, which is mainly
based on an intercept-resend eavesdropping strategy, in-
dicates that single-photon CV-QKD gives increased secure
bit rates per photon for intermediate channel losses.

During the process of PDC, the pump photon with wave
vector k, splits into two lower frequency (signal and idler)
photons with wave vectors k, and k;. The spatial and spec-
tral properties of the photon pair are correlated by the
material dispersion. In what follows it is assumed that
the state is spectrally filtered such that the frequencies of
signal and idler photons are restricted to wy,) = w;y =
w,/2. The resulting two-photon state is

1) = Ivae) + [ dictdict etk W), (1)

For the practical PDC source, the down-converted modes
are usually close to the longitudinal axis with the trans-
verse vectors |kt | < k and |k}| < k; (k); = k). For
a pump beam with a Gaussian profile the biphoton ampli-
tude f(ki;k;t) can be approximated by

kL k) = alk + k) gkt — ki)

exp(iAk.L) — 1
iAk, L

2
= Conpl = "Pled + kP ,
kit — kP

with Ak, = 2K = k, ==

(2)
and where a(ki- + ki) originates from the pump envelope
and transverse phase-matching function, while ¢, (k& —
ki) is the longitudinal phase-matching function. C is the
constant for normalization, K = k; = k;, wy is the beam
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waist of the pump, and L denotes the length of the non-
linear crystal in the z direction [17]. Retaining the longi-
tudinal phase-matching function ¢, (ki — ki) is critical
to bounding the shared information from above [19].

The joint probability distribution of ki and k} is given
by p(ki: ki) = |f(ki; k)], The mutual information be-
tween k& and kil can be calculated from [20]

I(ki; ki) = Hk) — HkE | k3, 3)

where H(ki) and H(k} | ki) denote the entropy and
conditional entropy, respectively. Similarly, the Fourier
transform of Eq. (2) determines the mutual information
I(rif; ri) between the transverse positions of the two pho-
tons. We model our practical source of entangled photon
pairs by considering degenerate Type-I PDC in a
B-BaB,0, (BBO) crystal with a phase-matching angle of
3°, pumped at 400 nm. Figure 1 shows the calculated
maximum mutual information that Alice and Bob can
extract if they measure with equal probabilities the position
and momentum of the photons. The graph illustrates the
information transfer gain for CV single-photon systems.
This should be compared with binary coding, for which a
maximal value of one is obtained. For a fixed pump power,
the amount of shared information between PDC photons
may be increased by increasing the pump waist w, and
decreasing the crystal length L, though the penalty is a
reduced efficiency of photon-pair generation. The entan-
glement of the two-photon state in our analysis can be
characterized by considering the mutual information for
direct measurements of a pair of conjugate continuous
variables, namely, the position and momentum of the
photons. Alternatively, one may quantify the entanglement
contained in this degree of freedom by decomposing the
state into its Schmidt modes [21] and evaluating the cor-
responding concurrence. We verified that this approach
yields the same asymptotic behavior, which confirms the
consistency of our results with more general entanglement
measures. QKD further requires that the measurements of
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FIG. 1. Mutual information for entangled photon pairs gener-

ated by type-I PDC in BBO crystal.

noncorresponding variables do not exhibit correlations; our
calculations show that the mutual information between
momentum and position [I(ki;ri) and I(ri;ki)] is
negligible.

To analyze the security of a single-photon CV-QKD
system, we choose a specific protocol. Pairs of entangled
photons are generated in the nonlinear crystal and trans-
mitted to Alice and Bob separately via a quantum channel.
The two parties choose randomly to detect either the
position (rt) or momentum (k+) of each photon they
receive. Then Alice and Bob announce by an authenticated
public channel the variables that they measured for each
photon and drop the bits where they used different varia-
bles; the remaining bits constitute the sifted raw key. To
accomplish a successful quantum key distribution, the
system must allow Alice and Bob to distill a secret key
from the sifted raw key that is inaccessible to the adversary,
Eve. With forward reconciliation [22] and privacy ampli-
fication [23], the achievable secret key rate in momentum
is bounded below by

Al =13 — Iy =Hky | E) — H(ky | k), (4)

where E is the result of Eve’s measurement on her ancilla.
For individual attacks, it has been shown that there exists
the entropic uncertainty relation [24]

H(ky | E) + H(ry | rg) = logyre, ®)
The conditional entropy is bounded by [25]
H(x, | xp) = jlog,[2meA*(x, | xp)], (6)

where x stands for k or r, while A% denotes the variance. So
that by combining Eqgs. (4)—(6), we find

1 1 1
Al = -1 - . 7
2 0g2<4 Az("A |rB)A2(kA |k3)> @

It follows that a sufficient condition for Al = 0 is
A2(ry | rp)A%(ky | kp) = %- 3)

This result also applies for the security analysis in position.
For high entanglement, this condition coincides with the
EPR criterion [26]. It is easy to prove from Eq. (2) that the
states generated by PDC satisfy this condition, as demon-
strated recently [14,15,27]. Note, however, almost all of
these experiments employ one detector to scan through the
momentum or position values, so in principle the outcome
of each measurement is binary: either the photon hits the
detector or not. Therefore this setup is not suitable for
single-photon CV-QKD. To realize the full potential of
continuous variables without complex encoding, a suffi-
ciently large array of detectors [avalanche photodiodes
(APDs), pixels of a CCD camera, etc.] is needed to ensure
that binning and truncating do not significantly diminish
the information transfer rate [28]. This implies that the
dark count of the detectors will have a much higher impact
on the error rate than in standard BB84, though the proba-
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bility that Eve can guess the correct result also decreases
with the increased number of detectors.

To see this, assume that the entangled photon pair is
generated from the pump pulse with probability Pppc and
sent to Alice and Bob through two quantum channels with
throughputs 7, and ¢z. To measure the continuous variables
rt or k*, each party maps the distribution to n identical
detectors. We denote the probability of recording a dark
count within the detection time window for each detector
as Py, and its efficiency as 7. Alice and Bob keep the
results when one and only one detector clicks. There are
three cases to consider: (1) both parties have a dark count;
(2) one party detects a photon and the other has a dark
count; (3) both parties detect a photon. The probabilities
for each case are:

Py =[1 = Pppc + Pppc(l = mt4)

X (1 = mp)]n? PLu (1 — Pgan)™ 2, (%a)
Py = Pppclnta(1 — ntp)

+ (1 = nta)ntg]nPau(l — Pgu)™ ", (9b)
P53 = Pppcn?txt5(1 — Pagu) ™, (%)

respectively. The probability that the photon and a dark
count arise at the same detector simultaneously is negli-
gible. Among all the cases, only P; will reveal the quantum
correlations. This probability decreases as the channel loss
and number of detectors increase. Some typical values for
the realistic system with APDs as detectors and nanosec-
ond time gating are Pppc = 0.01, n = 0.6, and Py, =
107%. We fix the length of the BBO crystal at 2 mm and
assume a 2 mm pump waist (FWHM). The source is taken
to be at Alice’s station, so that 74, = 1 and tz = ¢, where ¢ is
the transmission of the channel between Alice and Bob.
Taking into account the dark count contribution according
to Eq. (9), Eq. (8) is satisfied for channel throughput above
t = 36% (68%) [4.4 dB (1.7 dB) channel loss] assuming a
detector array with n = 128 (256) pixels. For free space
transmission the extinction coefficient varies over a large
range [29]. Here we assume it is 1 dB/km, so the corre-
sponding distance is 4.4 km and 1.7 km, respectively. At
these distances the probability of uncorrelated events P; +
P is less than 1%, which means that the noise level is still
extremely low.

Analysis of the variance product seems to suggest that
this QKD scheme is not suitable for long-distance use. But
note that Eq. (8) is tight bound for the general CV-QKD
schemes and it is possible to loosen the bound when
considering the special characteristics of the experimental
imperfections in the single-photon CV-QKD protocol.
Reconsidering Eqgs. (4)—(8), note that the equality in
Eq. (7) can be achieved only when Eve’s attacks satisfy
certain strict conditions. The most important condition is
that the distribution of Bob’s measurement outcomes con-
ditioned on Alice’s results should be Gaussian [25]. A
Gaussian attack is well known to be optimal for conven-

tional CV-QKD using the quadratures of multiphoton
states since in these systems experimental imperfec-
tions—mainly the loss of the channel—will preserve the
Gaussian character of the transmitted state, broadening
Bob’s distribution. By replacing the channel with a lossless
one and applying a Gaussian attack, Eve can hide in the
channel noise. The normal way for Alice and Bob to detect
Eve is to monitor the covariance matrix of their results. In
contrast, for single-photon dichotomic-variable QKD, the
experimental imperfections (loss, noise, etc.) yield uncor-
related detection events between Alice and Bob, which are
typically interpreted as background noise. In single-photon
CV-QKD the experimental imperfections play a similar
role to those in standard dichotomic single-photon QKD.
The events registered by each party are either from the
PDC photons or from the detector noise, and the latter has a
uniform distribution. Hence Alice and Bob expect un-
broadened Gaussian joint probability distributions from
the quantum correlation measurements interspersed with
uncorrelated flat background events, which in total repre-
sents a non-Gaussian distribution. In order to stay unde-
tected Eve must mimic this distribution; therefore, she only
has limited options and the optimal attack for multiphoton
CV-QKD is prohibited here. Moreover, for non-Gaussian
distributions, the left side of Eq. (7) can be much bigger
than the right side, which means even when the EPR
condition is violated, it is still possible for Alice and Bob
to draw the secret key.

A possible eavesdropping strategy that satisfies the
above conditions is an intercept-resend attack: Eve inter-
cepts the photon sent to Bob, measures it in the randomly
chosen variable (momentum or position), and resends a
photon in the eigenstate based on her measurement result.
If, by chance, she has chosen the same measurement basis
as Alice and Bob, her operation will appear as an undis-
turbed channel between these two parties. Otherwise, by
measuring the conjugate variable Eve introduces a flat
background noise, which cannot be distinguished from
the dark noise of the detector array. Therefore by adjusting
the loss of the channel, Eve can hide her disturbance
behind the experimental imperfections. We define an
intercept-resend ratio A as

number of photons intercepted by Eve

- total number of photons Alice sends to Bob"

By balancing the disturbance introduced by Eve with the
background noise, which originates from the experimental
imperfections, we find an allowed maximum intercept-
resend ratio for Eve is

2n
L DG -1 +n’ 1}’
(7 )(m )+n
where [ is the channel loss and 7 is the number of detectors.

For a lossless channel (I = 0) or noiseless detectors
(Pgark = 0), Anax = 05 i.e., no eavesdropping is possible,
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FIG. 2. The minimum secret information per recorded photon
pair (AI™") is estimated numerically from A,,. The corre-
sponding channel loss [ is calculated from Eq. (10). The initial
entangled photons are generated by a 2 mm-long BBO crystal
and a pump at 400 nm with 2 mm beam waist.

while for fixed [ and Pg,y, Anax increases with n.
Equation (10) clearly shows how the experimental imper-
fections open loopholes for Eve to attack. Moreover, the
minimum secret information that Alice and Bob are able to
distill (A™mn = Jin — ymaxy can be directly estimated
from A,,,. The relation between A/™" and the channel
transmission loss is shown in Fig. 2. Comparing this result
with the variance product analysis, it is evident that the
secure loss level (35 dB for n = 128) is significantly
improved for this eavesdropping strategy.

An important question in quantum cryptography is the
relationship between entanglement and security. It has
been proved that distributed entanglement between Alice
and Bob is a necessary precondition for secret key distri-
bution [30]. Also the connection between quantum and
secret correlations has been established [31]. Never-
theless, it is still not clear how to draw a secure key from
the distributed entanglement. For classical privacy ampli-
fication (forward or reverse reconciliation), the security
limit is usually a stronger condition than the entanglement
threshold [32]. In the intercept-resend attack for our pro-
tocol, the logarithm negativity as a function of the intercept
fraction A shows that Alice and Bob remain entangled until
A =1, while as Fig. 2 and Eq. (10) show, the classical
privacy amplification requires A < 75% (where AI™" =
0) to draw the secret key. Hence for a practical QKD
scheme, the detection of entanglement may not be enough
for secret key distillation.

To conclude, we have shown the potential to transfer
more than 1 bit of information per photon using the spatial
degrees of freedom of the entangled photon pairs. Because
of the special non-Gaussian distributions of Alice and
Bob’s measurement results, the options for eavesdropping
are severely limited. A detailed security analysis on a

plausible attack, intercept-resend, is given. Whether Eve
gains by means of more powerful attacks requires further
study. In particular, a more detailed analysis of the impact
of binning the information is required for a practical QKD
system using a limited number of detectors.
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