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We investigate multiple linear optical teleportation in the Knill-Laflamme-Milburn scheme with both
maximally and nonmaximally entangled states. We show that if the qubit is teleported several times via a
nonmaximally entangled state, then the errors introduced in the previous teleportations can be corrected
by the errors introduced in the following teleportations. This effect is so strong that it leads to another
interesting phenomenon: i.e., the total probability of successful multiple linear optical teleportation is
higher for nonmaximally entangled states than maximally entangled states.
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One of the main activities in quantum computation field
is linear optical processing of quantum information [1]. In
particular, the very first experimental demonstration of
quantum teleportation was based on linear optics [2].
However, the teleportation only had a success probability
of 25% partially due to the impossibility of performing
complete Bell measurement [3]. In order to perform scal-
able quantum computation, it is of essential importance to
improve this success probability to a value close to 100%.
Recently, Knill, Laflamme, and Milburn (KLM) [4] have
shown that the probability of success for the teleportation
of a superposition of vacuum and one photon Fock state
can indeed be increased by using a maximally entangled
state of two N � 1 dimensional Hilbert spaces encoded in
N photons. The probability that teleportation succeeds is
then equal to 1� 1

N�1 . Moreover, when teleportation suc-
ceeds, the fidelity of the teleported qubit is equal to 1.
Spedalieri et al. [5] generalized their protocol for polariza-
tion encoding of a qubit, i.e., when one uses horizontal and
vertical polarizations rather than photon number states to
represent the logical values 0 and 1. Franson et al. [6]
proposed a different scheme, which does not require that a
qubit has to be teleported with the perfect fidelity but rather
assumes that the qubit is always teleported successfully
and aims at maximizing the average fidelity. Their scheme
is based in fact on the KLM scheme with another carefully
chosen entangled state. Franson et al. have shown that their
scheme gives better average fidelity of the teleported qubit
than the KLM scheme. In [7], we have shown that if the
aim is maximization of the probability of successful tele-
portation and one requires unit fidelity of the teleported
qubit, then the state used in the original KLM scheme is
optimal. Thus, the maximally entangled state is best suited
for single quantum teleportation.

In this Letter, we consider several subsequent linear
optical teleportations; i.e., the qubit is teleported from A
to C, then from C to D, and so on, and finally to B. We
show an interesting phenomenon that when the final unit

fidelity of the teleported qubit is required after completion
of all teleportations, then the nonmaximally entangled
states give higher probability of successful teleportation
than the maximally entangled ones. It is surprising because
usually maximally entangled states are optimal for
information-theoretical tasks [8].

Let us begin with description of a generalization of the
KLM scheme of linear optical teleportation to the one
which is based on the nonmaximally entangled states [6].
In this scheme, one uses the following entangled state

 jtNi �
XN
i�0

cijViijHiN�ijHiijViN�i; (1)

where jVii stands for jVi1jVi2 . . . jVii, i.e., one vertically
polarized photon in each of the subsequent modes.
Similarly, jHiN�i stands for jHii�1jHii�2 . . . jHiN , i.e.,
one horizontally polarized photon in each of the sub-
sequent modes. If we use the states fjViijHiN�i: i �
0; 1; . . . ; Ng and fjHiijViN�i: i � 0; 1; . . . ; Ng as the ortho-
normal basis states of Alice’s and Bob’s Hilbert spaces,
respectively, we may treat the state of Eq. (1) as a bipartite
entangled state. For ci �

1��������
N�1
p , we obtain a maximally

entangled state. In order to teleport a qubit in the state
j i � �jHi � �jVi, Alice applies the �N � 1�-point
quantum Fourier transform to the input mode and the N
first modes of the state jtNi, which is given by
 

FN�v
y
k � �

1�������������
N � 1
p

XN
lk�0

!klkvylk ;

FN�h
y
k � �

1�������������
N � 1
p

XN
lk�0

!klkhylk :

(2)

In the above equations, vyk and hyk are the creation opera-
tors for vertically and horizontally polarized photons in
mode k, respectively, and ! � ei2�=�N�1�. After this trans-
formation, the state of the system is
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1�������������

N � 1
p

�
N�2 XN

i�0

XN
l0;...lN�0

�
!
P

N
k�0

klk�hyl0v
y
l1

. . .vylih
y
li�1

. . .hylN � �v
y
l0
vyl1 . . .vylih

y
li�1

. . .hylN �cijVACi0...NjHi
ijViN�i: (3)

Note that in the first term, there are i creation operators for vertically polarized photons while in the second term, there are
i� 1 creation operators for vertically polarized photons. Next, Alice measures the total number of vertically polarized
photons and horizontally polarized photons in each of the first N � 1 modes. If she detects vj vertically polarized photons
and hj horizontally polarized photons in mode j, then the state of the last N modes is

 jHim�1 1�����������
p�m�

p �
�cmjHi��cm�1!

�
P

N
j�0

j�vj�hj�jVi
�
jViN�m; (4)

where 0<m �
PN
j�0 vj < N � 1 is the total number of

vertically polarized photons detected and p�m� �
j�cmj2 � j�cm�1j

2 is the total probability of detecting m
vertically polarized photons. However, if Alice detects 0 or
N � 1 vertically polarized photons, then the state of the
qubit is irreversibly destroyed, which happens with the
average probability of 1

2 �jc0j
2 � jcNj

2�. One can see that
the modified state of the teleported qubit is found in the
N �mth mode. After correction of the phase, this state
becomes

 j mi �
1�����������
p�m�

p ��cmjHi � �cm�1jVi�: (5)

The qubit can be returned to its original state by perform-
ing the generalized measurement given by the Kraus op-
erators:

 ES �
cm�1

cm
jHihHj � jVihVj;

EF �

��������������������������
1� j

cm�1

cm
j2

s
jHihHj;

(6)

for jcm�1j � jcmj. A similar measurement exists if
jcm�1j> jcmj. When ES is applied, then the qubit ends in
its original state j�i � �jHi � �jVi. The probability of
successful error correction is

 p�Sjm� � h mjE
y
SESj mi �

jcm�1j
2

p�m�
: (7)

In [7], we described how such a measurement can be
implemented experimentally with linear optics. In order
to obtain the total probability of a successful teleportation,
we have to sum up the joint probabilities of detecting m
vertically polarized photons and a successful error correc-
tion. Let us recall that if 0 or N � 1 photons are detected,
then the teleportation fails. Hence, we restrict the summa-
tion over m from 1 to N. We obtain

 p�S� �
XN
m�1

p�S;m� �
XN
m�1

p�Sjm�p�m�

�
XN
m�1

minfjcm�1j
2; jcmj

2g: (8)

Let us now suppose that the qubit is to be teleported once
again (see Fig. 1). Then the simplest strategy is to perform
the first teleportation followed by the error correction, then
the second teleportation followed by the error correction.
However, it is not the optimal strategy. Let us, thus, assume
that we do not correct the error introduced in the first
teleportation and teleport the qubit once again with the
use of the identical entangled state. After the second tele-
portation, the state of the qubit is

 j m;ni �
1����������������

p�m; n�
p ��cmcnjHi � �cm�1cn�1jVi�; (9)

where p�m; n� is the joint probability of detecting m ver-
tically polarized photons in the first teleportation and n
vertically polarized photons in the second teleportation,
and is given by

 p�m;n��p�njm�p�m�� j�cmcnj2�j�cm�1cn�1j
2: (10)

If cm � cn�1 and cn � cm�1, then the state of the qubit is

 j m;ni � �jHi � �jVi; (11)

i.e., it is the original state of the qubit, and we do not have
to perform the error correction. The second teleportation
corrected the error introduced by the first teleportation. We
call this effect the error self-correction. A similar effect
occurs for entanglement swapping as considered by Acin,
Cirac, and Lewenstein [9] (see also: [10–13]). In general, if
jcm�1cn�1j< jcmcnj, then one can recover the original
state of the qubit by performing generalized measurement
given by the Kraus operators:

 ES �
cm�1cn�1

cmcn
jHihHj � jVihVj;

EF �

������������������������������������
1� j

cm�1cn�1

cmcn
j2

s
jHihHj:

(12)

FIG. 1. Several subsequent teleportations. A better strategy is
not to perform error correction at C, D, and so on but to perform
it at B after completion of all teleportations.
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A similar measurement exists if jcm�1cn�1j> jcmcnj. The
joint probability of detecting m vertically polarized pho-
tons in the first teleportation and n vertically polarized
photons in the second teleportation and the successful error
correction is

 p�S;m; n� � min�jcmcnj
2; jcm�1cn�1j

2�: (13)

On the other hand, if we performed the first teleportation
followed by the error correction and the second teleporta-
tion followed by the error correction, then the probability
of detecting m vertically polarized photons in the first
teleportation and n vertically polarized photons in the
second teleportation and the successful correction of both
errors would be

 p0�S;m;n��min�jcmj2;jcm�1j
2�min�jcnj2;jcn�1j

2�; (14)

which is lower or equal to the previous probability.
Moreover, if (jcm�1j> jcmj and jcn�1j< jcnj) or
(jcm�1j< jcmj and jcn�1j> jcnj), then the probability
p0�S;m; n� is lower than the probability p�S;m; n�. We
conclude that it is better to perform the error correction
at the end when all teleportations were completed.

Let us now suppose that we perform M subsequent
teleportations with the use of the identical entangled states
of Eq. (1). A straightforward calculation gives the follow-
ing probability of detecting m1, m2, . . ., mM vertically
polarized photons in the first, second, . . ., Mth teleporta-
tion, and the final successful error correction

 p�S;m1; m2; . . .mM� � min�jcm1
cm2

. . . cmM
j2; jcm1�1cm2�1 . . . cmM�1j

2�: (15)

In order to obtain the total probability of successful multiple teleportation, we have to sum these probabilities over
m1, m2, . . ., mM ranging from 1 to N. We obtain

 p�S� �
XN

m1�1;m2�1;...;mM�1

min�jcm1
cm2

. . . cmM
j2; jcm1�1cm2�1 . . . cmM�1j

2�: (16)

Let us now take the following six-photon entangled state
whose coefficients ci depend on the parameter x (see
Fig. 2)

 jt6i �
X6

i�0

�������������������������������������������������
1� 9x

7
� �3� ji� 3j�x

s
jViijHi6�ijHiijVi6�i:

(17)

The coefficients are symmetric around i � 3, and the
parameter x is the slope of the line connecting the points
�i; jcij2�. For x � 0, the state is maximally entangled. Note
that for x > 0, the smallest coefficients are c0 and c6. On
the other hand, the average probability that the state of the
teleported qubit will be irreversibly destroyed during tele-
portation (and before error correction) is 1

2 �jc0j
2 � jc6j

2�.
We can lower this probability by lowering the coefficients
c0 and c6. We should remember that in such a case, we

increase the probability that the state will be irreversibly
destroyed during error correction. Let us calculate with the
help of Eq. (16) the total probability of successful six
subsequent teleportations of a qubit with the error correc-
tion at the end.

In Fig. 3, we present how the probability of successful
multiple teleportation depends on the parameter x. For x �
0, the probability of successful teleportation is p �
0:3965. However, for x � 0, this probability slowly in-
creases with x reaching its maximal value p � 0:4152
for x � 0:0366. Hence, we obtain an interesting phenome-
non—the probability of the successful multiple teleporta-
tion is greater for nonmaximally entangled states than for
maximally entangled ones. It should be compared with the
probability of successful single teleportation which
reaches always its maximal value for maximally entangled
state [7]. Let us also point out that the probability for x � 0

1 2 3 4 5 6
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0.15

0.2

0.25

FIG. 2. Exemplary series of coefficients jcij2 of entangled state
of Eq. (17) (x � 0:0366).
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FIG. 3. Probability of successful six teleportations with en-
tangled state of Eq. (17) as a function of x. For x � 0, the state is
maximally entangled while for x � 0, it is nonmaximally en-
tangled.
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is equal to the product of probabilities of each successful
teleportation, i.e., p � �67�

6 � 0:3965. We can see that if
we use nonmaximally entangled states, we have an in-
crease in the probability p�0:0366� � p�0� � 0:0187. The
relative increase in the probability is p�0:0366��p�0�

p�0� �

0:0471. Thus, the use of nonmaximally entangled states
contributes in about 5% to the total probability. The effect
may be even stronger when one increases the number of
photons in the entangled state and/or the number of sub-
sequent teleportations. It is also interesting to calculate the
probability p0�0:0366� of successful teleportation when
one performs error correction between subsequent tele-
portations. We obtain p0�0:0366� � 0:2511. This probabil-
ity is lower than the probability of successful teleportation
with the final error correction p�0:0366� � 0:4152. The
increase in the probability due to the error self-correction is
p�0:0366� � p0�0:0366� � 0:1641, and the relative in-
crease is p�0:0366��p0�0:0366�

p0�0:0366� � 0:6535.
Let us now have a look at the origin of this effect. The

teleportation does not succeed when one of the senders
detects 0 or N � 1 vertically polarized photons which
happens with the average probabilities of 1

2 jc0j
2 and

1
2 jcNj

2, respectively. We can decrease these probabilities
by decreasing the coefficients c0 and cN . If we do it and
perform single teleportation, then the error correction is
needed. The probabilistic nature of the error correction
decreases the total probability of successful teleportation,
and there is no gain. However, if we perform several tele-
portations with no error correction between subsequent
teleportations, then the error self-correction may occur.
This error self-correction may correct the errors or increase
the probability of a successful error correction at the end.
This effect allows us to obtain higher probability of suc-
cessful teleportations with nonmaximally entangled states
which have smoothly lowered the probabilities of having 0
and N vertically polarized photons.

In summary, we have considered several subsequent
teleportations of a qubit in the KLM scheme. We have
shown how the errors introduced in the previous teleporta-
tions can be corrected by the errors introduced in the
following teleportations. This effect leads to an interesting
new phenomenon. Namely, nonmaximally entangled states
can be better for multiple linear optical teleportation. This
strange behavior is connected to the fact that with linear
optics, one cannot perform the complete Bell measure-

ment, and hence, quantum teleportation can be imple-
mented only probabilistically [3]. We believe that our
research will lead to deeper understanding of manipulation
of entanglement with local linear optical operations and
classical communication which are a natural analog of
local operations and classical communication usually con-
sidered in entanglement theory. Our result may have ap-
plications in linear optical quantum computation and
quantum networks.
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