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We prove that the 2D Ising model is complete in the sense that the partition function of any classical
q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function
of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the
original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires
only polynomially more spins with respect to the original one, and we give a constructive method to map
such models to the 2D Ising model. For more general models the overhead in system size may be
exponential. The results are established by connecting classical spin models with measurement-based
quantum computation and invoking the universality of the 2D cluster states.
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I. Introduction.—Classical spin models such as the Ising
and Potts models are widely studied in statistical physics,
because they provide important toy models for magnetism
and they can be mapped to numerous interesting problems
in physics and mathematics [1,2]. The geometry of a
model, in particular its spatial dimension, plays an impor-
tant role with respect to the physical properties of the
system and the possibility of finding (approximate) solu-
tions. For instance, it is known that evaluation of the
partition function of the Ising model with magnetic fields
is easy in 1D, while on a 2D square lattice this problem is
already NP-hard [3].

In this Letter we study the interrelations between clas-
sical q-state spin models on different geometries (or
graphs) and find that the 2D Ising model (which has q �
2) plays a distinguished role in this study. We consider
mappings that leave the partition function—and hence all
thermodynamical quantities, such as free energy or mag-
netization, derived from it—invariant (see also [4,5]). As
the main result of this Letter, we prove that the 2D Ising
model is complete in the sense that the partition function of
any classical q-state spin model can be expressed as a
special instance of the partition function of a 2D Ising
model with inhomogeneous couplings. More precisely,
given a partition function ZG of a q-state spin model on
an arbitrary graph—which may be, e.g., a lattice of arbi-
trary dimension or involve long-range interactions—there
exists a 2D square lattice of enlarged size, and suitably
tuned nearest-neighbor coupling strengths and magnetic
fields, such that the partition function of the Ising model
on this lattice specializes to ZG. Furthermore, in the case
where the original model on the graph G is an Ising or
Potts-type model, we find that the corresponding 2D square
lattice requires only polynomially more spins with respect
to the original one. For more general models the overhead
in system size may be exponential. However, one impor-
tant remark needs to be made: in order to achieve this
result, one has to allow for complex couplings in the 2D

partition function—thus leaving the ‘‘physical’’ regime of
the model.

The results are proven by relating the problem at hand to
insights from quantum information theory, more particu-
larly to the area of measurement-based quantum computa-
tion (MQC). The latter is a recently established paradigm
for quantum computation where quantum information is
processed by performing sequences of single-qubit mea-
surements on a highly entangled resource state [6]. In order
to obtain our results, we first prove that the Ising partition
function on an arbitrary graph (with external field) can be
written as the overlap between an entangled quantum state
and a complete product state—thus generalizing a con-
struction which we introduced in Ref. [5]; see also Ref. [7].
This formulation allows us to make a connection with
MQC. In particular, we prove that the entangled state
corresponding to the Ising model on a 2D square lattice
is (a variant of) the 2D cluster state [8]. The latter is known
to be a universal resource state for MQC in the sense
that every quantum state can be obtained by performing
a suitable sequence of single-qubit measurements on a
sufficiently large 2D cluster state. This quantum universal-
ity feature of the 2D cluster states leads to the result that
the 2D Ising model is complete in the sense specified
above.

II. Classical Ising model.—We consider the classical
Ising model involving N two-state spins �s1; s2; . . . ; sN� �
s, where sa � �1. The spins interact pairwise according to
an interaction pattern specified by a graphG � �V; E� with
vertex set V and edge set E, and the coupling strengths are
denoted by Jab. Moreover, the spins are subjected to local
magnetic field terms ha. The Hamiltonian of the system is
given by HG�s� :� �

P
fa;bg2EJabsasb �

P
a2Vhasa. In

other words, we consider a general inhomogeneous
Ising model on an arbitrary graph. The partition function
ZG is defined by ZG�fJab; hag� :�

P
e��HG�s�, where � �

�kBT��1, with kB the Boltzmann constant and T the
temperature.
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III. Quantum formulation.—We now show how the par-
tition function ZG can be expressed in a quantum physics
language. Let ~G be the graph with n � jVj � jEj vertices
and 2jEj edges which is obtained fromG by adding at each
edge fa; bg 2 E an additional vertex ab and thus ‘‘splitting
every edge in half’’ (see Fig. 1). We will call ~G the
decorated version of G. The vertex set of ~G is thus given
by the union of the original vertex set V of G and the set
VE � fabjfa; bg 2 Eg corresponding to edges of G—note
that we label the vertices in VE by double indices, indicat-
ing their origin in the corresponding edge of G. We now
consider an n-qubit state j’ ~Gi, defined on a set of qubits
labeled by V [ VE, which is defined to be the graph state
[9,10] associated with the decorated graph ~G. In particular,
j’ ~Gi is the (unique) joint fixed point of the jVj � jEj
stabilizing operators Ka and Kab,

 Ka � X�a�
Y

b:fa;bg2E
X�ab� Kab � Z�ab�Z�a�Z�b�; (1)

for every a 2 V, and for every e � fa; bg 2 E. Here X and
Z denote the Pauli spin matrices, and the notation X�i� (Z�i�)
indicates that the operator X (Z) acts on qubit i.

We can now express the partition function as follows:

 ZG�fJab; hag� � 2jVj=2h�j’ ~Gi: (2)

In this expression,

 j�i �
� O
ab2VE

j�abi
O
a2V

j�ai
�

(3)

is a complete product state specifying the coupling
strengths of the Ising model. In particular, j�abi �
e�Jab j0i � e��Jab j1i is an (unnormalized) one-qubit state
(acting on qubit ab) determined by the interaction strength
between particles a and b. Similarly, j�ai � e�ha j0i �
e��ha j1i is an (unnormalized) one-qubit state (acting on
qubit a) determined by the local magnetic field at particle
a. Expression (2) shows that ZG can be obtained by calcu-
lating the inner product of the graph state j’ ~Gi and a
complete product state. The choice of the product state
allows one to specify the couplings of the Hamiltonian and
the temperature, while the structure of the graph state
reflects the interaction pattern.

To show that Eq. (2) holds, we use that j’ ~Gi can be
written as j’ ~Gi /

P
tjB

Ttijti, where t is a binary vector of

length jVj, B is the incidence matrix of the graphG, and by
writing out the sum h�j’ ~Gi. The construction of j’ ~Gi can
be viewed as a generalization of the one we introduced in
Ref. [5]. While in Ref. [5] each qubit was associated with
an edge of the graph G, here we have two types of vertices:
one subset VE associated to edges (‘‘edge qubits’’) and one
to vertices V (‘‘vertex qubits’’). This enlarging of the
system size allows one to also treat local terms in the
Hamiltonian (whereas Ref. [5] only dealt with zero exter-
nal field). In addition, the stabilizer of the state j’ ~Gi can be
immediately obtained from the graph G describing the
interaction pattern (or its decorated version ~G), as in
Eq. (1) and Fig. 1.

IV. MQC and the 2D cluster states.—We now turn our
attention to measurement-based (or ‘‘one-way’’) quantum
computation, and establish a relation to the partition func-
tion of the 2D classical Ising model via Eq. (2).

The one-way quantum computer [6] is a recently devel-
oped model for quantum computation, where computations
are realized by performing single-qubit measurements on a
highly entangled substrate state called the 2D cluster state
jCi [8]; the latter is a graph state [10] associated to a 2D
square lattice C.

A particular feature of the one-way quantum computer is
that it is universal. This means that any n-qubit quantum
state can be prepared, up to local unitary Pauli operations,
by performing sequences of single-qubit measurements on
a d� d cluster state jCi of sufficiently large system size
M � d2. This property of the 2D cluster states immedi-
ately implies that every n-qubit quantum state j i can be
written in the following way:

 �j i � 2�M�n�=2�I 	 h�j�jCi: (4)

This formula represents one ‘‘measurement branch’’ of a
one-way computation performed on an M-qubit cluster
state, yielding the state j i (up to a local operation �) as
an output state on the subset of qubits which has not been
measured. The dual product state h�j � 	jh�jj, which acts
only on the measured qubits, is determined by the bases
and the outcomes of the different steps in the computation.
The local unitary operator � (‘‘correction operator’’) acts
on the unmeasured qubits (i.e., on the Hilbert space of j i);
the tensor factors of � are always instances of Pauli
operators: �i 2 fI; X; Y; Zg. The prefactor 2�M�n�=2 reflects
the fact that the success probability of every measurement
branch is 2n�M.

As proved in Ref. [6], for all n-qubit states j i that can
be efficiently prepared in the circuit model, i.e., by a
polynomial sequence of two-qubit gates, the required
size M of the cluster state in Eq. (4) scales polynomially
with the number of qubits: M / poly�n�. Moreover, in this
case the measurement bases j�ji as well as the correction
operations � can be efficiently determined. Since any
graph state on n qubits can be prepared using at most
O�n2� controlled-phase gates [10], it follows that an arbi-
trary n-qubit graph state [9] can be written in the form (4)

G ~G

FIG. 1 (color online). Decorated graph ~G (right) correspond-
ing to a 2D lattice G (left). Dark (green) dots indicate vertices
originating from the vertices V of G, while light (red) dots
indicate vertices VE originating from edges E of G.
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with M � poly�n�. Furthermore, for the preparation of
graph states every single-qubit state j�ji can always be
chosen to be one of the X, Y, and Z eigenstates.

Also j’~Ci (i.e., the state j’ ~Gi where G � C is the 2D
square lattice) is a universal resource. This is because the
2D-cluster state jCi can be deterministically generated
from j’~Ci (up to a local correction) by performing
single-qubit Y measurements on all qubits in VE. This
fact was already noted in [7]. As a consequence, one has

 �0jCi � 2jEj=2�I 	 h0Y jVE�j’~Ci; (5)

where j0YiVE is a tensor product of the (� 1) eigenstate of
Y on all edge qubits, and �0 is a local correction.

V. Universality of the 2D Ising model.—We are now
ready to establish the connection between the evaluation
of Ising partition functions and universal MQC. With this
in mind, consider the Ising model on a graph G. The
partition function ZG can be expressed in the form (2).
Now consider the following procedure.

First, the graph state j’ ~Gi is written in the form (4) when
taking j i � j’ ~Gi. Together with Eq. (5), this implies that
the partition function ZG can be written as

 ZG�fJab; hag� � A 
 h�j’~Ci; (6)

where A is a constant and j�i is a product state, j�i �
�j�i 	�0j�i 	 j0YiVE . Note that, as j’ ~Gi is a graph state,
the system size of the 2D cluster state grows polynomially
with the size ofG. Furthermore, j�i consists of X, Y, and Z
eigenstates.

Now, applying Eq. (2) to the 2D Ising model, the overlap
between j’~Ci and a complete product state corresponds to a
2D Ising partition function Z2D, evaluated in certain cou-
plings fJ0ij; h

0
ig determined by j�i. This allows us to con-

clude that ZG can be written as follows:

 ZG�fJab; hag� / Z2D�fJ0ij; h
0
ig�: (7)

In other words, the Ising partition function on an arbitrary
graph can be recovered as a special instance of the Ising
partition function on a 2D square lattice.

Note that, in the above sequence of arguments, one step
is particularly crucial, namely, the universality of the 2D
cluster states: this property is used to ‘‘map’’ an arbitrary
state j’ ~Gi, and hence the associated partition function, to
the 2D cluster state; i.e., all states can be ‘‘reduced’’ to this
single structure.

We give a few remarks regarding this construction. In
Eq. (6), note that the product state j�i is determined by
both the interaction graph G and the couplings fJab; hag of
the original model. On the one hand, it contains the states
j�abi and j�ai encoding the couplings of the original
model; on the other hand, j�i contains states j�ji and
j0Yi corresponding to the sequence of one-qubit measure-
ments which are to be implemented in order to generate
j’ ~Gi from the universal resource j’~Ci. In going from
Eq. (6) to Eq. (7), the state j�i in turn determines the

couplings in which the 2D model is to be evaluated. Note
that the decorated cluster state j’~Ci has vertex qubits and
edge qubits. The factors of j�i acting on the edge qubits
determine the pairwise interactions J0ij, whereas the factors
of j�i acting on the vertex qubits determine the external
fields h0i. The tensor factors of j�i which act on the edge
qubits are all equal to j0Yi / j0i � ij1i. This implies, in
particular, that, in (7), only homogeneous pairwise cou-
plings J0ij need to be considered. Furthermore, due to the
imaginary unit ‘‘i’’ in j0Yi, these couplings generally lie in
a complex parameter regime; in particular, one can show
that �J0ij � �i�=4 is a correct choice. Also, the fact that
the J0ij can be chosen to be homogeneous implies that all
information regarding the pairwise couplings Jab and ex-
ternal fields ha of the original model, and the graph G of
this model, will be encoded in the factors of j�i acting on
the vertex qubits, and thus in the external fields h0i (which
will typically be inhomogeneous). We further remark that
the part of j�i acting on the vertex qubits generically also
corresponds to complex interaction strengths h0i (e.g., j�i
may contain Y eigenstates). A special role is played by
those factors of j�i which are equal to Z eigenstate j0i /
e1j0i � e�1j1i. These states give rise to ‘‘infinitely large’’
external fields at the corresponding vertices, which effec-
tively corresponds to a boundary condition.

In conclusion, the universality of the 2D cluster states
j’~Ci in the context of MQC implies that the Ising partition
function on any graph can be expressed as a special in-
stance of a (polynomially enlarged) 2D Ising model with
complex, homogenous pairwise interactions and complex,
inhomogenous external fields. Note that even though such
complex interaction strengths do not correspond to physi-
cal models, considering the partition function as a function
with complex arguments is commonly done, e.g., in the
context of evaluating the Tutte polynomial or finding
(complex) zeros of ZG to identify phase transition points
[2].

VI. Generalizations to q-state models.—Our results can
also be generalized to q-state spin models such as the Potts
model [1]. We showed in Ref. [5] that the partition function
of a q-state Potts model on a graph G � �V; E� can be
written as the overlap between a stabilizer state j’q~Gi and a
complete product state j�i: ZG / h�j’

q
~G
i. Similar to the

treatment of the Ising model, the state j’q~Gi depends only
on the graph, and the state j�i � 	abj�abi is a complete
product state depending only on the couplings of the
model. However, the main difference is that the single-
particle systems are no longer qubits, but q-dimensional
systems. For example, one finds j�abi � e�Jab j0i �Pq�1
k�1 jki [5]. Interestingly, the partition function of such

a q-state model (for arbitrary graphs) can again be ex-
pressed as a special instance of the partition function of
the 2D-Ising model (with q � 2) and complex parame-
ters—again using the connection to MQC. To achieve this
we use that any q-dimensional product state can be mapped
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by a suitable unitary operation to a product state of mq �

dlog2qe qubits: e.g., j�abi � Uyabj0i
	mq . As q is fixed, the

unitary Uab can be prepared with a constant number of
two-qubit gates. Being a stabilizer state, j’q~Gi is preparable
by a polysized (qubit) circuit. It follows that ZG can be
written as the inner product of an efficiently preparable
state j’i :� 	abUabj’

q
~G
i (which is now regarded as a

multiqubit state) with a product state j0i	mqjEj. The univer-
sality of j’~Ci for MQC now implies that j’i can be
obtained by performing single-qubit measurements on a
polynomially enlarged cluster state j’~Ci. In particular,
Eq. (4) can be applied to j i � j’i. Using a similar argu-
ment to Sec. , this implies that the Potts model partition
function is a special instance of the partition function of a
polynomially enlarged 2D-Ising model with properly tuned
complex parameters and two-state spins.

The above strategy can even be applied to q-state models
beyond the Potts model, e.g., to all models on directed
graphs where the Hamiltonians are arbitrary functions of
the difference (modulo q) between spin values, including
arbitrary local terms, while still obtaining a 2D-Ising
model with polynomially more spins. Even more generally,
one can verify that the partition function of an arbitrary
q-state spin model (with finite q), where arbitrary pairwise
or even k-body interactions with bounded k are allowed,
can be written as the overlap between a suitable quantum
state and a product state. This immediately implies that
every partition function can be expressed as a special
instance of the 2D-Ising model. However, in general an
exponential overhead may be required.

We further remark that the 2D square lattice does not
play a special role in this context: there are many other
models with a similar completeness property [11]. For
example, all Ising models on a graph G whose associated
graph state j’ ~Gi is a universal resource for MQC allows
one to draw the same conclusions as for the 2D square
lattice. Examples of such other universal models for MQC
include, e.g., hexagonal, triangular, and kagome lattices
[12], 3D lattices as well as 2D lattices with holes. On the
other hand, all models corresponding to graph states j’ ~Gi
which are not universal resources for MQC (in the sense of
universal state preparation [12]) are not capable of express-
ing partition functions of, e.g., the 2D-Ising model (or
other complete models). Examples of ‘‘noncomplete’’ in-
teraction patterns are 1D structures such as chains or trees,
or more generally all graphs where the decorated graph ~G
has bounded rank width [12].

VII. Summary.—We have established a connection be-
tween evaluating the partition function of a general class of
classical spin models and measurement-based quantum
computation. We have used the universality of the 2D
cluster states, in particular, the possibility of preparing
any other quantum state by means of projective single-
qubit measurements from a sufficiently large universal

state, to show a type of completeness of the classical 2D
Ising model: the partition function of any classical spin
model (Ising and Potts model on arbitrary graphs, and
beyond) can be recovered as a special case of the Ising
model on a sufficiently large 2D square lattice with com-
plex couplings. Moreover, we have given an explicit, effi-
cient construction of the corresponding 2D model.

Finally, it is an interesting open problem whether a
restriction to the real (and thus physical) parameter regime
of the 2D-Ising model is possible while keeping the com-
pleteness property. It would also be interesting to inves-
tigate how the explicit reductions obtained in this Letter
may be related to previous results regarding the NP-
completeness of the 2D Ising model [3] (see also [13]).
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