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We show that quasiparticle excitations with irrational charge and irrational exchange statistics exist in
tight-binding systems described, in the continuum approximation, by the Dirac equation in �2�
1�-dimensional space and time. These excitations can be deconfined at zero temperature, but when
they are, the charge rerationalizes to the value 1=2 and the exchange statistics to that of ‘‘quartons’’ (half-
semions).
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Introduction.—It was shown by Jackiw and Rebbi [1]
and by Su, Schrieffer, and Heeger [2] that excitations with
fermion number 1=2 (or charge 1=2) exist at domain walls
in the dimerization pattern of electrons hopping along a
chain, as is believed to occur in polyacetylene. For elec-
trons hopping on the honeycomb lattice, the lattice relevant
to graphene, a topological defect in a dimerization pattern
that is realized by a vortex was shown to lead to a topo-
logical zero mode and bind the fermion number 1=2 to the
vortex [3]. Fermion-number fractionalization in both poly-
acetylene and graphene can be understood in terms of the
spectral properties of one-dimensional (1D) and two-
dimensional (2D) massive Dirac Hamiltonians, respec-
tively, that describe the low energy limit of the electronic
tight-binding Hamiltonians. These fractionally charged
topological excitations are generically deconfined in 1D.
Their deconfinement in 2D relies on a mechanism for the
screening of the 2D Coulomb potential by thermal [3] or
quantum fluctuations involving an axial gauge field [4].

Applying different potentials to odd and even sites of
the linear chain results in a continuously varying frac-
tional fermion number [5–7]. At the level of the Dirac
Hamiltonian, this perturbation is represented by a second
(gap-opening) mass term, that adds in quadrature to the
mass due to the hopping dimerization of the chain. A
complex order parameter is constructed from these two
masses as its real and imaginary pieces, and the fractional
fermion number is related to the phase twist of this order
parameter as it sweeps through a domain wall, a result that
has a natural interpretation within a bosonization scheme
[5]. Although exchange statistics is ill-defined in 1D, this
varying phase twist also implies a continuously varying
exclusion statistics [8].

Can the charge and the exchange statistics of fraction-
alized quasiparticles in 2D be continuously varied as well?
Here we show that they can. The fermion numbers of
quasiparticles bound to a vortex can thus be irrational.
Remarkably, if an axial gauge field supporting a half-
vortex is added to (precisely) screen the interaction poten-

tial between quasiparticles, their fractional fermion num-
ber rerationalizes to the value Q � 1=2 and their statistical
angle (for when time-reversal symmetry is broken) to the
value �=� � 1=4. These results are first derived at the
level of an effective field theory in �2� 1�-dimensional
space and time. We then discuss the relevance of this
analysis for planar tight-binding models.

Definitions.—The massive Dirac Lagrangian that we
shall consider in this Letter takes the form

 L :� ������i@� � �5A5�� �Ma�a��; (1a)

with� � 0, 1, 2 and a � 0, 1, 2, 3, �� � �y�0, and 4	 4
matrices

 �0 �
0 I
I 0

� �
; �i �

0 ��i
�i 0

� �
;

�5 � i�0�1�2�3; M1 � 1; M2 � �i�5;

M3 � �3; M0 � �5�3:

(1b)

We allow for the background fields A5� and �a to vary in
space-time x � �x�� � �t; r�. The field A5� couples to the
Dirac fermions as an axial U�1� gauge field does [4]. The
four fields �a, when constant in space and time, open an
energy gap in the Dirac spectrum. These masses have the
following physical meaning on the honeycomb lattice, e.g.,
graphene. The masses �1;2 correspond to the two compo-
nents of the complex Kekulé bond-density-wave order
parameter � � �1 � i�2 [3]. The mass �3 � �s is a
staggered chemical potential that favors charges to sit in
one of the sublattices of the honeycomb lattice [9]. Finally,
�0 � � is the only of the four masses that breaks time-
reversal symmetry (TRS). It originates on the lattice from a
next-neighbor hopping term with phases that was intro-
duced in Ref. [10]. We will use a constant � to discuss
quasiparticle statistics. The TRS masses �s, �1, and �2

add in quadrature. Hence, we define the fields m and n �
�n1; n2; n3� by

 m :�
�������������������������������
�2

1 � �2
2 ��

2
s

q
; ni :�

�i

m
: (2)
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Induced fermionic U�1�-charge current with TRS.—The
current j��x� � h ���x�����x�i can be computed perturba-
tively in a derivative expansion in n. When A�5 �0, it reads

 j� �
1

8�
���	n 
 �@�n ^ @	n�: (3)

Equation (3) is the desired extension to 2D of the boson-
ized current in a Luttinger liquid. For a static charge-1
vortex that vanishes at the origin and has the large distance
asymptotic form
 

��r� � ��1�ei
 �O�r�2�;

@i��r� � �i��1�
�ijr

j

r
ei
 �O�r�3�;

(4)

where r � r�cos
; sin
�, we find the charge

 Q �
1

2

�
1�

�s�1�=��1����������������������������������������
1��2

s �1�=�2�1�
p

�
�mod1� (5)

that varies continuously with the asymptotic value of the
dimensionless ratio �s�1�=��1�. The ambiguity mod 1 in
the fermion number Q corresponds to whether the bound
state in the gap is empty or occupied. For�s�1� � 0,Q �
�1=2 is recovered as in Ref. [3].

When A�5 � 0, the induced fermionic current is J� �
j�cov � �j� where j�cov is Eq. (3) in which the derivatives
have been replaced by the covariant derivatives D� �

@� � 2iA�5 , �j� � � 1
2�

�s

m F
�
5 , and F�5 � e��	@�A5	.

The current J� is conserved. The additional charge con-
tributed by �j� is proportional to the flux carried by A5�.
In fact, in the presence of the static vortex (4) and of the
static half-vortex Ai5�r� � ��

ij rj

r2 a5�r� where a5�0� � 0
and a5�1� � 1=2, the fractional charge is Q � 1=2 for
any �s�1�=��1�!

Observe that, when A5� � 0, despite the fact that the
Dirac Hamiltonian associated with Eq. (1) does not possess
an SU�2� symmetry [the mass matrices M1;2;3 do not close
an SU�2� algebra under multiplication], the induced fer-
mionic current (3) is the same as that in the O�3� nonlinear
sigma model (NLSM) derived from Dirac Hamiltonians
with an internal SU�2� symmetry [11,12]. This is so for the
following reason. The nonunitary transformation �� �
��M0 and � � � is harmless as it induces a constant
Jacobian that cancels for any physical observable. Under
this transformation, the matrices �i � M0Mi close the
SU�2� algebra ��i;�j� � 2i�ijk�k and commute with the
transformed matrices �� � M0��. The transformed
Lagrangian (1) is then invariant under the SU�2� trans-
formations generated by � � ��1;�2;�3� when A�5 � 0.

Exchange statistics.—If two identical quasiparticles as-
sociated with two vortices are exchanged, the many-
particle wave function changes by the phase exp�i�� with
� the statistical angle. On general grounds, we expect that
fractionally charged quasiparticles acquire a mutual frac-
tional statistics. However, for quasiparticles to display
fractional statistics one needs to break TRS, and thus we

now include a uniform TRS-breaking �0 � �. The calcu-
lation of the fractional charge when � � 0 has shown that
fractionalization is of topological origin in that it only
depends on the asymptotic values of the fields. The same
fractional charge follows when we impose the nonlinear
constraint n2 � n2

1 � n
2
2 � n

2
3 � 1, with m in Eq. (2) held

constant (see Fig. 1). Now, a uniform � competes with a
uniform m leading to a quantum critical point when m �
�. Correspondingly, the fractional charge can be computed
for a nonvanishing ratio �=m and shown to be the same as
before except for the multiplicative factor 
C :� ��m�
j�j� with � the Heaviside step function. Moreover, for
A�5 � 0, the effective action governing the dynamics of the
background fields n is, despite the lack of SU�2� symmetry
in Eq. (1), the same as that of the O�3� NLSM of
Refs. [11,12]:

 Seff �
m
8�

Z
d3x�@�n�

2 � i�
Hsgn���SHopf � . . . : (6a)

The Hopf term is nonlocal in terms of the fields n. One
possible representation is [13] (see also Ref. [14])

 SHopf �
���	
48�2

Z
d3xtr��Ui@�Uy��Ui@�Uy��Ui@	Uy��

(6b)

withU the unitary 4	 4 matrix field that rotates the space-
time dependent vector n into a fixed direction, say �0; 0; 1�:
� 
 n � Uy�3U. When the angle 
H :� ��j�j �m� is
nonvanishing, the angle 
C vanishes and vice versa. Both
the fractional charge and the Hopf term contribute to the
statistical angle,

 �=� � sgn���Q2�
C � 
H� � sgn���Q2: (7)

A heuristic derivation of Eq. (7) when m> j�j and
A�5 � 0 is the following. Consider first a uniform n, for
which the square of the Dirac Hamiltonian H associated
with Eq. (1) is H 2 � �p2 �m2 � �2� � 2�

P3
i�1 �ini.

This Hamiltonian resembles that of a particle with spin in
a magnetic field, of strength proportional to �, that points
in the n direction (hereafter, we take �> 0). If the uniform
n is rotated adiabatically by 2� around the ẑ direction, a

FIG. 1 (color online). The 2 sphere spanned by the masses n �
�n1; n2; n3� � m�1��1;�2; �s�. A vortex of charge 1 in the
dimerizations �1 and �2 corresponds to a parallel on the sphere
whose height is fixed by the asymptotic value of the staggered
chemical potential �s�1�. The spherical area red (or yellow)
enclosed by this parallel gives the fractional charge induced by
the fermionic zero mode localized at the core of the vortex.
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Berry phase �rot�n� � 2�sin2 �
2 is accumulated for each

filled single-particle electronic state, where � is the angle
that n makes with the north pole of the unit sphere. The
many-body Berry phase is the sum over occupied single-
particle Berry phases after subtraction of the Berry phase
of some reference many-body state (i.e., without vortex).
Now, n is not spatially uniform for a vortex, and thus if all
n�r� are rigidly rotated by 2�, their accumulated phase
depends on the texture. In a semiclassical approximation,
the Berry phase at each r must be weighted by the fermion
density: �rot �

R
d2rj0�r�2�sin2 ��r�

2 . With the help of
Eq. (3) when m>�, this gives �rot �

R d�
4� 2�sin2 �

2 �

�sin4 �
2 � �Q2. Hence, the phase accumulated by spin-

ning the vortex by 2� is �Q2, which is what an object with
spin Q2=2 collects. The exchange statistics for two quasi-
particles of charge Q each should then be �=� � Q2.

Numerics.—We compare the predictions that the charge
varies continuously as a function of the scaling variable
�s�1�=��1� according to Eq. (5) in the absence of the
axial vortex [a5�1� � 0] and that the charge rerationalizes
to Q � 1=2 in the presence of the axial half-vortex
[a5�1� � 1=2] to results from an exact diagonalization in
a lattice model. The model we consider is the �-flux phase
[15] for electrons hopping on a square lattice, to which we
add a dimerization pattern of the hopping amplitudes that
realizes, on the lattice, the mass and axial vortices of
Refs. [3,4]. We then study the charge bound to these
singularities as a function of the staggered chemical po-
tential �s for the cases a5�1� � 0, 1=2 (see also [16]).

Consider a square lattice as in Fig. 2 on which spinless
fermions hop. The square lattice can be divided into two
interpenetrating sublattices A (open circles in Fig. 2) and B
(filled circles in Fig. 2), such that all nearest neighbors of
sites in A belong to B, and vice versa. Here we construct the
tight-binding Hamiltonian as H � �

P
r2A

P4
j�1�t

�
r;j �

�tr;j�a
y
r br�sj � H:c:, where r � �m1; m2� 2 Z2 labels the

sites in A, located at positions �m1 �m2�x̂� �m1 �m2�ŷ
in the square lattice. The sj are the four vectors (labeled
counterclockwise, starting from the �x̂ direction, by j �
1, 2, 3, 4) connecting a site in A to one of its four nearest-
neighbor sites in B.

The kinetic energy in Eq. (1) follows from linearizing at
half-filling the tight-binding dispersion when the only non-
vanishing hopping amplitudes in units of t > 0 are t�r;j �

��1��m1�m2���j;1��j;3�t. These hoppings define the �-flux
phase (they are gauge equivalent to the case of uniform
hoppings t but with a magnetic flux of � in units of h=e
threading each elementary plaquette, which is indicated in
Fig. 2).

A staggered chemical potential��s on sublattice A and
��s on sublattice B induces the bilinear ��M3� in Eq. (1)
[9]. A dimerization, such as shown in Fig. 2(a), arises from
�tr;j / ��1�m1�m2��j;1 � �j;3�t�r;j. Such dimerizations in-

duce the mass bilinears ��M1;2� in Eq. (1) [3]. A dimeriza-
tion, such as shown in Fig. 2(b), arises from �tr;j / ��j;3 �

�j;1�t�r;j. Such dimerizations induce the axial bilinears
���1;2�5� in Eq. (1).

A charge-n vortex in the columnar dimerization pattern
is defined by

 �tr;j � t�r;j
��1�

2t
�cosn� cos
j � sinn� sin
j�;

cos� �
m1 �m2

jrj
; jrj �

�������������������������
2�m2

1 �m
2
2�

q
;


j � ��m1 �m2� � j��=2�;

(8)

FIG. 2 (color online). (a) The columnar dimerization pattern,
as indicated by the coloring (shading) of the bonds, for the
nearest-neighbor hopping on a square lattice in the background
of the �-flux phase that opens up the gap ��1�. A staggered
chemical potential, as indicated by the distinction between sites
of sublattice A and B opens up the gap �s�1�. (b) The staggered
dimerization pattern for the nearest-neighbor hopping on a
square lattice that generates an axial gauge field. (c) A charge-
1 vortex in the columnar dimerization (a). (d) A charge-1=2 vor-
tex in the staggered dimerization (b) with core radius c � 0:3.
(e) The fermion density profile of (c) for a square lattice with
open boundary conditions and 144	 144 sites. (f) The fermion
number as a function of the scaling variable �s�1�=��1� in the
presence of the single charge 1 vortex (c) or with the addition of
the axial charge 1=2 vortex (d) with core radius c � 0:01. The
staggered chemical potential �s takes the values 0:01t (black,
points 1–3), 0:03t (red, points 4–7), 0:06t (green, points 8–10),
and 0:1t (blue, points 11–15). The thick and thin lines are the
prediction (5) without the axial vortex and Q � 1=2, respec-
tively.
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and shown in Fig. 2(c) when n � 1. A half-vortex with
core radius c in the staggered dimerization pattern is
defined by

 �tr;j�
t�r;j
2jrj

tanh
jrj
c
���j;3��j;1�cos����j;4��j;2�sin��

(9)

and shown in Fig. 2(d).
The charge-density profile is obtained by adding the

contributions from all exact single-particle eigenstates
that are filled: negative energy states plus the bound state
with energy within the gap that appears as a consequence
of the vortex. The fermionic density profile of the vortex
from Fig. 2(c) is shown in Fig. 2(e) for a lattice made of
144	 144 sites with a weight concentrated either at the
core of the vortex or on the boundary (open boundary
conditions are used). The fermion number in the presence
of a vortex is approximated by integrating the local fer-
mion density in a disk surrounding the vortex that extends
beyond the localization length of the induced bound state
but remains insensitive to the fermion density that has
accumulated at the boundary. Subtraction of the back-
ground fermion charge in the absence of the vortex is
always implicit. The continuous dependence of the fer-
mion number (5) on the scaling variable �s�1�=��1� is
shown in Fig. 2(f) for the charge 1 vortex of Fig. 2(c). Also
shown in Fig. 2(f) is the effect of the axial charge 1=2
vortex from Fig. 2(d) superimposed to the charge 1 vortex
of Fig. 2(c); as anticipated we find that the fermion number
stays close to 1=2. We conclude that the agreement be-
tween the field theory and the numerics is good and im-
proves as both �s�1�=��1� ! 0 and ��1�=t! 0.

Energetics.—At the level of the field theory, the energy
cost to separate vortices of opposite charge grows like the
logarithm of their separation. Temperature fluctuations
screen this interaction through the Kosterlitz-Thouless
mechanism. Alternatively, it was shown in Ref. [4] that
the bare interaction between vortices is screened at zero
temperature by coupling them to an axial gauge field A5�

carrying a half-vortex. The issue of energetics on the lattice
is more subtle than in the continuum approximation. The
axial U�1� symmetry of the field theory (1) is reduced to
the finite group Z4 of rotations by �=2 about a site of the
square lattice when the dimerization pattern responsible for
the gap at the Fermi energy is commensurate with the
lattice. If so, the energy cost to create two vortices of
opposite charge grows linearly with their separation.
However, slight deformations of the hopping amplitudes
away from the Z4-symmetric ones move the position of the
Dirac points in the Brillouin zone, rendering the wave
vector for the gap-opening dimerization pattern (which
connects the two Dirac points) incommensurate with the
lattice while preserving the bound state in the gap [3]. This
incommensuration can restore an energy cost for the cre-

ation of a vortex-antivortex pair with a logarithmic depen-
dence on their separation, as is believed to happen in
quantum dimer models, in the mechanism termed Cantor
deconfinement in Ref. [17].

Summary.—We have calculated the irrational fermion
number attached to vortices in a complex-valued Higgs
field coupled to massive Dirac fermions in �2�
1�-dimensional space-time. We also calculated the ex-
change statistics of these vortices and showed that it is
irrational as soon as the fractional fermion number is.
Deconfinement of the vortices at zero temperature re-
quires the (axial gauge) coupling to a half-vortex [4].
Remarkably, this coupling rerationalizes the fermion num-
ber to the value 1=2. We have compared our predictions for
the induced fermion number with an exact diagonalization
study of a planar tight-binding model with a static defec-
tive dimerization of the hopping amplitude and found a
good agreement.
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