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A new realization of the fourth-order derivative Pais-Uhlenbeck oscillator is constructed. This
realization possesses no states of negative norm and has a real energy spectrum that is bounded below.
The key to this construction is the recognition that in this realization the Hamiltonian is not Dirac
Hermitian. However, the Hamiltonian is symmetric under combined space reflection P and time reversal
T. The Hilbert space that is appropriate for this PT-symmetric Hamiltonian is identified and it is found to
have a positive-definite inner product. Furthermore, the time-evolution operator is unitary.
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It has long been thought that field theories based on
equations of motion higher than second order are unac-
ceptable because they possess states, known as ghosts,
which have nonpositive norm. The purpose of this Letter
is to show that this is not necessarily so, and thereby to
regenerate interest in higher-order quantum field theories.
Higher-order theories appear in a variety of contexts [1]
and are potentially of great interest.

To explain the issues involved, we review the Lee model.
The model was proposed in 1954 as a trilinearly coupled
quantum field theory in which the renormalization program
can be carried out in closed form [2]. However, just one
year later it was argued that this theory has a ghost state [3].
Specifically, a ghost appears in the Lee model when the
renormalized coupling constant exceeds a critical value.
Above this critical value, the Lee-model Hamiltonian be-
comes non-Hermitian in the Dirac sense because its tri-
linear interaction term acquires an imaginary coefficient.
(Dirac-Hermitian conjugation is combined matrix trans-
position and complex conjugation.) In the non-Hermitian
phase of the Lee model a state of negative Dirac norm
emerges.

For the past half century, there have been many attempts
to make sense of the Lee model as a valid quantum theory
(starting as early as [4]), but it was not until 2005 that it was
shown that it is possible to formulate the theory without a
ghost [5]. The solution to the Lee-model-ghost problem is
that when the coupling constant exceeds its critical value,
the Hamiltonian transits from being Dirac Hermitian to
being PT symmetric, i.e., symmetric under combined par-
ity reflection and time reversal. In the sector in which the
ghost appears the PT symmetry is unbroken; that is, all
energy eigenvalues are real. For any non-Hermitian,
PT-symmetric Hamiltonian in such a phase, one should
not use the Dirac norm. Rather, one should introduce an
alternate inner product [6–9]. With respect to the new
inner product appropriate for the PT-symmetric phase of
the Lee model, the Hamiltonian becomes self-adjoint and
its ghost state is reinterpreted as an ordinary quantum state

with positive PT norm. This same procedure has been
applied to other problematic models [10].

The purpose of this Letter is to show that this same
prescription can be implemented in the fourth-order-
derivative Pais-Uhlenbeck (PU) oscillator model, the pro-
totypical higher-derivative quantum field theory. We con-
struct here a realization in which the Hamiltonian has an
unbroken PT symmetry and the negative Dirac-norm states
that are thought to arise are really ordinary quantum states
having positive PT norm.

The action of the PU model is acceleration dependent:
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where �,!1, and!2 are all positive constants, and without
loss of generality we take !1 � !2 [11]. This model
represents two oscillators coupled by a fourth-order equa-
tion of motion: d4z=dt4 � �!2
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0 [12]. With _z serving as the canonical conjugate of both z
and �z, the system is constrained and its Hamiltonian can be
found by the method of Dirac constraints. To this end, in
place of _z we introduce a new dynamical variable x (with
corresponding conjugate px), and via the Dirac method we
construct the Hamiltonian [13]
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This Hamiltonian depends on two coordinates x and z, and
their canonical conjugates, px and pz. The Poisson-bracket
algebra of the five operators x, px, z, pz, and H is closed,
with nonzero brackets in the x, px, z, pz sector being
fx; pxg � 1 and fz; pzg � 1. This construction is indepen-
dent of the classical equations of motion and thus holds for
both stationary and nonstationary classical paths. Thus, we
can use it to quantize the model, with nonzero commuta-
tors being �x; px� � i and �z; pz� � i.
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Making the standard substitutions
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we obtain a Hamiltonian and commutator algebra [13]
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that possess two distinct Fock-space realizations.
Specifically, if we take a1 and a2 to annihilate the no-
particle state j�i according to a1j�i � 0, a2j�i � 0, the
energy spectrum that ensues is then bounded below with
j�i being the ground state with energy �!1 �!2�=2.
However, here the excited state ay2 j�i, which lies at energy
!2 above the ground state, has a Dirac norm h�ja2a

y
2 j�i

that is negative. Alternatively, if we take a1 and ay2 to
annihilate the no-particle state j�i, according to a1j�i �
0, ay2 j�i � 0, the theory would then be free of negative-
norm states, but the energy spectrum would be unbounded
below. Both of these realizations are undesirable and char-
acterize the generic problems that are thought to afflict
higher-derivative quantum theories.

We propose an alternative realization of the above
bounded-below energy sector. To formulate it, we supply
some global information and we make a standard wave-
mechanics representation of the Schrödinger equation
HPU n � En n by setting pz � �i@=@z, px � �i@=@x.
In this representation the state whose energy is �!1 �
!2�=2 has eigenfunction [13]

  0�z; x� � exp�
�
2
�!1 �!2��!1!2z2 � x2� � i�!1!2zx�;

and the states of higher energy have eigenfunctions that are
polynomial functions of x and z times  0�z; x�. The eigen-
function  0�z; x� is not normalizable on the real-z axis; it
grows exponentially as z! 	1. Evidently, for these ei-
genfunctions the realization pz � �i@=@z is not Hermitian
on the real-z axis. The representation of z and pz as Dirac-
Hermitian operators in (3) does not apply. Hence, the
Hamiltonian and commutators of (4) do not characterize
this realization and the analysis that leads to a Dirac-norm
ghost in this sector is avoided [14].

Since we started with just one underlying input classical
theory based on the IPU action of (1), it cannot be that this
input classical theory is the classical limit of both the
bounded-below and the unbounded-below energy-sector
realizations of the quantum PU theory. Rather, from the
way in which theories are canonically quantized, the co-

ordinates of the underlying classical theory correspond
to the eigenvalues of quantum-mechanical operators that
are Dirac Hermitian on the real axis. It is thus the
unbounded-below quantum-mechanical energy sector that
has the classical PU theory as its classical limit, with the
bounded-below quantum-mechanical energy-sector real-
ization corresponding to something different. [The eigen-
function of the typical unbounded-below energy-sector
state with energy �!1 �!2�=2 is obtained by replacing
!2 by �!2 in  0�z; x�, with pz � �i@=@z being a well-
behaved operator in this sector.]

Such a situation is not unprecedented in physics. For
instance, on quantizing the orbital angular momentum ~L �
~r
 ~p, one finds not only integer spin representations and
their associated spherical harmonics, but also half-integer
spin representations. These additional representations bear
no relation to any motion of coordinates in phase space and
they are divorced from the underlying classical phase space
whose quantization led us to uncover their existence in the
first place. Hence, of the two types of realizations of the
angular-momentum commutator algebra (integer and half-
integer spin), only one of them has a connection to the
underlying classical theory whose quantization led to the
commutator algebra.

Thus, to explore the bounded-below energy sector of the
quantized PU theory, we set aside the underlying classical
theory with its real z and x coordinates. Instead, we begin
with the Hamiltonian (2) considered as an ab initio input
quantum-mechanical Hamiltonian subject to the commu-
tator algebra constraints �x; px� � i, �z; pz� � i. We thus
seek a differential representation of this commutator alge-
bra in some c-number parameter space, a space that we
shall also label by parameters z and x. Since such a
parameter space is needed to represent the commutator
algebra, we can just as easily use complex parameters as
real ones in quantum mechanics as long as they correctly
implement the commutator algebra [15].

Given the structure of  0�z; x�, and recalling that one can
only use the realization pz � �i@=@z when the �z; pz�
commutator acts on test functions that are well behaved,
we see that such well-behaved functions cannot be taken to
lie on the real-z axis of the parameter space. Moreover,
they cannot even lie in two Stokes wedges of angular open-
ing 90� and centered about the positive- and negative-real
axes (the east and west quadrants of the letter X) in the
complex-z plane. However, in the complementary 90�

Stokes wedges centered about the positive- and negative-
imaginary z axes (the north and south quadrants of the
letter X),  0�z; x� vanishes exponentially rapidly as jzj !
1. We thus restrict the Schrödinger equation eigenvalue
problem to the complementary (north-south) Stokes
wedges. In these wedges  0�z; x� is the fully normalizable
ground state of the system and the energy spectrum is
precisely the purely real one associated with the
bounded-below energy sector.
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To avoid having to work on the imaginary axis, we
instead perform the (isospectral) operator similarity trans-
form y�e�pzz=2ze��pzz=2��iz, q�e�pzz=2pze��pzz=2�
ipz with �y; q� � i. In terms of y and q the Hamiltonian
takes the form

 H �
p2

2�
� iqx�

�
2
�!2

1 �!
2
2�x

2 �
�
2
!2

1!
2
2y

2; (5)

where, for simplicity, we have replaced px by p. In (5) the
operators x, p, y, and q are now formally Dirac Hermitian
on the real x and y axes, but because of the �iqx term, H
has become complex and is manifestly not Dirac Hermitian
[16]. This non-Hermiticity is not apparent in the original
form of the Hamiltonian in (2). This surprising and un-
expected emergence of a non-Hermitian term in the PU
Hamiltonian is the root cause of the ghost problem of the
Pais-Uhlenbeck model.

While the Hamiltonian (5) is not Dirac Hermitian, it falls
into a class of equally physically viable Hamiltonians,
those that are PT symmetric. To demonstrate the PT
symmetry we make the following assignments: Under P
and T, we take p and x to transform like conventional
coordinate and momentum variables. However, we define
q and y to transform unconventionally in a way that has not
been seen in previous studies of PT quantum mechanics; in
the language of quantum field theory, q and y transform as
parity scalars instead of pseudoscalars, and they have
abnormal behavior under time reversal. To summarize
these transformation properties, under P reflection x and
p change sign but y and q do not; under T reflection y and
p change sign but x and q do not. Thus, under combined
PT reflection x and y change sign but p and q do not.

Because the PT-invariant H has an entirely real spec-
trum, we can introduce a positive-definite inner product
and we can reinterpret the ghosts as conventional quantum
states of positive PT norm. Following the standard proce-
dures of PT quantum mechanics, we construct the PT
norm by introducing an operator called the C operator
[17]. The C operator associated with the Hamiltonian (5)
satisfies three conditions:

 C 2 � 1; �C; PT� � 0; �C; H� � 0: (6)

The first two are kinematical, while the third is dynamical
because it involves the specific Hamiltonian H.

In previous investigations it was established that C has
the general form C � eQP, where Q is a real function of
the dynamical variables and is Hermitian in the Dirac
sense. It had been found that Q was odd under a change
in sign of the momentum variables and even under a
change in sign of the coordinate variables. However, be-
cause of the abnormal P, T behaviors of the y and q
operators, the exact solution to the three simultaneous
algebraic equations in (6) gives an unusual and previously
unencountered bilinear structure for Q:

 Q � �pq� �xy; (7)

where � � �2!2
1!

2
2� and sinh�

��������
��
p

� � 2!1!2=�!2
1 �

!2
2�.
Even though the form of Q in (7) is unprecedented in

PT quantum mechanics, the effect of performing a simi-
larity transformation on the dynamical variables x; p; y; q
using eQ still generates a canonical transformation that
preserves the commutation relations, just as in previous
studies. For the PU model the transformation is

 

eQxe�Q � xc� idqs; eQqe�Q � qc� ixs=d;

eQye�Q � yc� idps; eQpe�Q � pc� iys=d;
(8)

where c � cosh�
��������
��
p

�, s � sinh�
��������
��
p

�, and d �
����������
�=�

p
.

InPT quantum mechanics a similarity transformation on
the PT-symmetric Hamiltonian with e�Q=2 yields a
positive-definite Hamiltonian that is Hermitian in the
Dirac sense [18]. Here, we obtain

 

~H � e�Q=2HeQ=2

�
p2

2�
�

q2

2�!2
1

�
�
2
!2

1x
2 �

�
2
!2

1!
2
2y

2:

The spectrum of ~H is manifestly real and positive and its
position and momentum operators are conventionally
Hermitian. This Hamiltonian is related to the original PU
Hamiltonian by a similarity transformation, which is iso-
spectral. Thus, despite the �iqx term, the positivity of the
PU Hamiltonian is proved [19].

Furthermore, the eigenstates j~ni of ~H have positive inner
product and can be normalized in the conventional Dirac
way using the standard inner product h~nj~ni � 1, where the
bra vector is the Dirac-Hermitian adjoint of the ket vector.
Equivalently, for the eigenstates jni of the Hamiltonian H,
because the vectors are mapped by j~ni � e�Q=2jni, the
eigenstates of H are normalized as

 hnje�Qjmi � ��m; n�;
X
jnihnje�Q � 1: (9)

Thus, the norm of (9) is the one that is relevant, with
hnje�Q rather than hnj being the appropriate conjugate
for jni [20]. Moreover, because the norm in (9) is positive
and because �H; CPT� � 0, the Hamiltonian H generates
unitary time evolution, just as one would want [21], [22].

To conclude, in order to construct an acceptable realiza-
tion for the Pais-Uhlenbeck oscillator, we have found the
region in parameter space where operators such as�i@=@z
are well defined. The appearance of a ghost state when one
takes the derivative operator to be Dirac-Hermitian on the
real-z axis is not an indication that there is anything wrong
with the theory itself, but only with that particular realiza-
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tion of it. Hence, higher-derivative field theories may not
be as problematic as they are often thought to be.
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