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In solving the eigenvalue wave equation, we relax the usual diagonal constraint on its matrix
representation by allowing it to be tridiagonal. This results in a larger representation space that
incorporates an analytic solution for the noncentral electric dipole pole potential cos�=r2, which was
believed not to belong to the class of exactly solvable potentials. Consequently, we obtain closed form
solution of the time-independent Schrödinger equation for an electron in the field of a molecule treated as
a point electric dipole.
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Introduction.—The electron binding properties of polar
molecules have recently been a topic of considerable theo-
retical [1] and experimental interest [2]. Using the Born-
Oppenheimer approximation, in which the motion of the
electron is calculated for fixed nuclear coordinates, it has
been shown that the electric dipole field is capable of
supporting an infinite number of bound states for an elec-
tron if the dipole moment is greater than a critical value
equal to 1.625 D [3]. Under these circumstances, the excess
electron will be bound to the molecule, giving rise to the
so-called dipole-bound anion. The critical dipole moment
does not depend on the size of the dipole. However, if the
system is treated dynamically to include the rotational
degrees of freedom of the nuclei, the infinite number of
bound states becomes finite [4].

Long ago, Fermi and Teller demonstrated first that a
point dipole could bind an electron in an infinite number of
bound states, if its dipole strength exceeds a critical value
[5]. Subsequently, several authors found that this critical
dipole strength was independent of the dipole length and
the presence of any short-range repulsion of the core nuclei
[6]. The consideration of rotational degrees of freedom in a
real molecular system reduces the number of bound states
to a finite number and increases the minimum dipole
strength to support at least one bound state by 10% with
respect to that of a fixed dipole. In this case, the critical
dipole moment depends on the dipole length, the rotational
state, and the moments of inertia of the polar molecules. It
is also expected that any angular momentum about the
symmetry axis can only increase the energy and hence
the value of the critical dipole moment [7]. From an
experimental point of view, the formation of a dipole-
bound anion has been difficult to observe because the
much diffused and loosely bound electrons are easily
stripped away by thermal collisions and/or by the electric
fields to which they are exposed. However, recent experi-
mental advances have made it possible to measure the
energy of one dipole-bound electron very accurately [2].

In this Letter, we address the issue of analyticity and
exactness of the solution of this problem. As a result, we do

confirm the outstanding difficulty that the energy eigen-
value equation for this problem in the diagonal representa-
tion, Hj�ni � Enj�ni, does not have a closed form
solution. This is because the noncentral electric dipole
potential, V�r; �� � cos�=r2 (in spherical coordinates), is
known not to belong to any of the established classes of
exactly solvable potentials. However, our approach follows
another path where we employ the tridiagonalization tools
inspired by the J-matrix method [8]. In this program, we
only require that the matrix representation of the wave
operator (both radial and angular) be tridiagonal and sym-
metric. Therefore, the matrix wave equation results in a
three-term recursion relation for the expansion coefficients
of the wave function. Consequently, the problem translates
into finding solutions of this recursion relation. The major
contribution of our present work is that by relaxing the
usual constraint on the matrix representation of the wave
operator from being diagonal to allow for a tridiagonal
representation, we were able to obtain an analytic solution
for the electric dipole potential. Therefore, this noncentral
potential becomes a new member in the class of exactly
solvable potentials.

The three-dimensional time-independent Schrödinger
equation for a particle of mass M and charge q in an
electrostatic potential V� ~r� is

 

�
�

@
2

2M
~r2
� qV� ~r� � E

�
 � 0; (1)

where the energy E is either discrete or continuous. In
spherical coordinates, this wave equation is separable for
potentials of the form [9].

 V� ~r� � Vr�r� �
1

r2

�
V��x� �

1

1� x2 V����
�
; (2)

where x � cos�. Thus, if we write the wave function as
 �r; �; �� � r�1R�r���������, then Eq. (1) becomes
separated in all three coordinates as follows
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�
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where the separation constants E� and E� are real and
dimensionless, and we have used the atomic units @ �
M � q � 1.

Now we specialize to the case where an electron is
interacting with a neutral molecule that has a permanent
electric dipole moment. This problem is modeled by a
charged particle moving under the influence of a point
electric dipole fixed at the origin with moment p pointing
along the positive z axis. Thus, V� � 0, V� � �p cos�,
and Vr � 0, where length is measured in units of a0 �
4�"0@

2=Mq2. With Vr � 0, Eq. (3c) becomes the wave
equation for the inverse square potential. It has been well
established that bound state solutions for this potential
could be supported only if the dimensionless coupling
parameter 2E� is less than the critical value � 1

4 [10].
Therefore, for bound states we take 2E� � �!2 � 1

4 ,

whereas for scattering states we write 2E� � ���� 1� �
��� 1

2�
2 � 1

4 , where � and ! are real dimensionless pa-
rameters. In the following, we obtain the angular and radial
components of the wave function for both cases. These will
be written as a series in terms of special functions that are
compatible with the domain of the Hamiltonian and sup-
port a tridiagonal matrix representation for the wave
operator.

The angular wave function.—It is straightforward to
obtain the normalized solution of Eq. (3a) with V� � 0
that satisfies the boundary conditions as ���� �

1�����
2�
p e�im�, where m � 0; 1; 2; . . . , giving E� �

1
2m

2.

Now, we expand the angular component ���� in a com-
plete basis set f�n�x�g1n�0 as ���� �

P
1
n�0 f

m
n �E���n�x�.

The basis elements are written as �n�x� � an�1� x���
�1� x��P��;	�n �x�, where P��;	�n �x� is the Jacobi polynomial
of degree n � 0; 1; 2; . . . . The dimensionless real parame-
ters �, � 	 0, �, 	 >�1 and an is a normalization
constant. The recurrence relation and orthogonality for-
mula of the Jacobi polynomials [11] show that a tridiagonal
matrix representation for h�njH� � E�j�n0 i is achievable
with V� 
 x if and only if � � 	 � m and � � � � 1

2m.
As a result, we obtain the following tridiagonal structure:

 2h�njH��E�j�n0 i�
��
n�m�

1

2

�
2
�

�
��

1

2

�
2
�

n;n0 �p

�������������������������������
n�n�2m�

�n�m�2�1=4

s

n;n0�1�p

����������������������������������������
�n�1��n�2m�1�

�n�m�1�2�1=4

s

n;n0�1; (4)

where we took 2E� � ���� 1� for scattering solutions.
Equation (3c) shows that � plays the role of the angular
momentum ‘ in central potential problems. However, un-
like ‘ that assumes integral values, � is a continuous
parameter. For positive E�, � must be either greater than
zero or less than �1.

The tridiagonal matrix representation (4) makes the
angular wave Eq. (3b) equivalent to the following recur-
sion relation for the expansion coefficients of ����
 �
��

1

2

�
2
Hm
n �

�
n�m�

1

2

�
2
Hm
n �p

n�m
n�m�1=2

Hm
n�1

�p
�n�1��n�2m�1�

�n�m�1=2��n�m�1�
Hm
n�1; (5)

where Hm
n are related to fmn through

 fmn �E�� �

����������������������������
n�m� 1=2

p
2m��n�m� 1�

�
��������������������������������������������������
��n� 1���n� 2m� 1�

p
Hm
n �p;��: (6)

Relation (5) implies that if p is too large then the reality of
the representation will be violated. Therefore, the dipole
moment should not exceed a certain critical value that
depends on m. Below, we show how to calculate these
critical values, denoted by pm. The solutions of the above
recursion relation (for fixed p and m) are functions in �
that are defined modulo an arbitrary nonsingular factor that

depends on � but otherwise independent of n. We choose
the standard normalization Hm

0 � 1 making Hm
n a polyno-

mial of degree n in ��� 1
2�

2. These polynomials were not
investigated previously. Since they are associated with the
electric dipole potential p cos�

r2 we refer to them as the
‘‘dipole polynomials.’’ For a given m and p, the recursion
relation (5) together with the initial value Hm

0 � 1 and the
definition Hm

�1 � 0 determine the set of all polynomials
fHm

n �p;��g completely. Now, the angular component of the
wave function  �r; �;�� � r�1R�r����;�� could then be
written as the L2 series
 

���;�� � Ap;�m e�im��1� x2�m=2

�
X1
n�0

�n�m� 1=2���n� 2m� 1�

22m��n�m� 1�2=��n� 1�

�Hm
n �p;��P�m;m�n �x�; (7)

where m assumes any integral value such that pm 	 p.
Ap;�m is a normalization constant that depends on the physi-
cal parameters of the problem. It should be obvious from
Eq. (4) that the discrete diagonal representation, where
H�j�ni � E�j�ni, is obtained only if p � 0 and

 � �
�
‘ ;� 	 0
�‘� 1 ;� � �1

;

where ‘ � n�m � 0; 1; 2; . . . . This means that a diago-
nal representation is obtained only in the absence of the
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electric dipole. This might be the reason behind the curious
absence of an exact analytic solution to this problem in the
literature.

For bound states we take 2E� � �!2 � 1
4 . This is

equivalent to the above with �! i!� 1
2 . Thus, the angu-

lar component of the wave function is identical to (7) but
with Hm

n �p;�� replaced by Gm
n �p;!� � Hm

n �p; i!� 1
2�

and m is restricted to be less than or equal to an upper
bound such that pm � p. Now, it has already been estab-
lished that for the electron-dipole problem the dipole mo-
ment p must exceed a certain critical value so that the
solution space for bound states becomes nonempty [1]. To
obtain this critical value, we investigate Eq. (5) for fmn and
with �! i!� 1

2 , which could now be written as the
eigenvalue equation hjfi � !2jfi, where h is the tridiag-
onal symmetric matrix
 

hnm � �
�
n�m�

1

2

�
2

nm � p

���������������������������������
n�n� 2m�

�n�m�2 � 1=4

s

n;m�1

� p

��������������������������������������������
�n� 1��n� 2m� 1�

�n�m� 1�2 � 1=4

s

n;m�1: (8)

Therefore, the determinant of the matrix h�!2I must
vanish, where I is the identity matrix. This translates into
a condition on the electric dipole moment p that depends
onm and!. The critical value pm is the smallest value that
satisfies this condition for ! � 0. For the lowest few
quantum numbers m, Table I shows a sequence of these
critical values for an N-dimensional matrix h with N �
2; 3; . . . ; 12. It is evident that the sequence converges rap-
idly with N for the given choice of significant digits. In
fact, for eachN one finds a set of 2K zeros, f�pigKi�1, of the
determinant where K � N

2 or K � N�1
2 if N is even or odd,

respectively. For large N, the smallest positive zero is the
critical value of the dipole moment. Table II lists the lowest
few zeros for several values of the azimuthal number m.
These values agree with those already obtained in [7].

The radial wave function.—It is taken as an element in
the space spanned by the basis functions �k�y� �
bky�e�y=2L�k �y�, where k � 0; 1; 2; . . . , y � 
r and L�k �y�

is the Laguerre polynomial. The length scale parameter 

is positive, � > 0, �>�1 and the normalization constant

is bk �
�����������������

��k�1�

��k���1�

q
. We start with the scattering solution

where 2E� � ���� 1�. The recurrence relation and or-
thogonality formula for the Laguerre polynomials show
that a tridiagonal matrix representation for h�kjHr �
Ej�k0 i is possible if and only if � � 2�� 1 and

 � �
�
�� 1 ;� 	 0
�� ;� � �1

:

This makes � 	 1 and gives � � ��2�� 1� for �� > 0.
Moreover, we obtain the following matrix elements of the
radial wave operator
 

h�kjHr�Ej�k0 i� �2k���1�
�

2

8
�E

�

k;k0 �

�

2

8
�E

�

�

� ������������������
k�k���

p

k;k0�1

�
�������������������������������������
�k�1��k���1�

p

k;k0�1

�
: (9)

Expanding R�r� in the basis as
P
1
k�0 g

�
k �E��k�y� and using

(9) in the matrix representation of the wave Eq. (3c) leads
to the following recursion relation

 2
�
k�

�� 1

2

�
cos’S�k � �k� ��S

�
k�1 � �k� 1�S�k�1;

(10)

where g�k �E� � bkS
�
k �E� and cos’ � 8E�
2

8E�
2 for E 	 0. This
recursion relation is identical to that of the ultraspherical
(Gegenbauer) polynomial C���1�=2

k �cos’�. Therefore, the
continuum radial wave function becomes
 

R�r� � BE��
r����1�=2e�
r=2
X1
k�0

��k� 1�

��k� �� 1�

� C���1�=2
k �cos’�L�k �
r�: (11)

The normalization constant BE� depends on � and the
energy but, otherwise, independent of k.

On the other hand, for bound states, the matrix repre-
sentation of the radial wave operator, h�kjHr � Ej�k0 i,
with 2E� � �

1
4�!

2 is tridiagonal if and only if � �
2�� 2 and 
2 � �8E. The radial wave equation becomes

TABLE I. Calculated values of the dipole moment parameter
(in atomic units) converging to the critical value pm as the
dimension N of the matrix representation of the angular wave
operator increases.

N m � 0 m � 1 m�2

2 0.649 491 141 019 818 4.220 288 503 393 705 11.804 934 601 571 14
3 0.639 369 160 661029 3.811 775 932 688 927 9.755 522 988 492 659
4 0.639 314 968 595 286 3.792 439 635 980 491 9.544 808 359 632 656
5 0.639 314 877 261 703 3.791 973 278 623 325 9.529 634 749 795 701
6 0.639 314 877 200 001 3.791 967 959 126 813 9.529 040 785 868 604
7 0.639 314 877 199 981 3.791 967 926 881 534 9.529 027 518 799 769
8 0.639 314 877 199 981 3.791 967 926 767 706 9.529 027 336 215 217
9 0.639 314 877 199981 3.791 967 926 767 456 9.529 027 334 574 952

10 0.639 314 877 199 981 3.791 967 926 767 455 9.529 027 334 564 905
11 0.639 314 877 199 981 3.791 967 926 767 455 9.529 027 334 564 862
12 0.639 314 877 199 981 3.791 967 926 767 455 9.529 027 334 564 860

TABLE II. Absolute values of the zeros (in atomic units) of the
determinant of the matrix representation of the angular wave
operator Eq. (8) for N � 50. The smallest zeros are the critical
value given in Table I.

m � 0 m � 1 m � 2

0.639 314 877 199 981 3.791 967 926 767 455 9.529 027 334 564 860
7.546 955 713 288 350 14.112 114 595 025 52 23.398 535 107 107 28

21.300 903 309 406 47 31.301 697 888 810 59 44.066 259 541 146 74
41.927 307 152 002 01 55.365 442 853 785 35 71.586 009 323 372 22
69.428 385 700 065 42 86.304 058 712 619 84 105.971 978 601 265 0
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equivalent to the following three-term recursion relation
for the expansion coefficients
 

!2Sk �
�
�k� �� 1�

�
k�

�
2
� 1

�
� k

�
k�

�
2

�

�

�
�� 1

2

�
2
�
Sk � k

�
k�

�
2

�
Sk�1

� �k� �� 1�
�
k�

�
2
� 1

�
Sk�1; (12)

where g!k �E� � bkSk�!;E�. One should observe the curi-
ous absence of the energy from this recursion relation. This
implies that the wave equation, in this representation, is
satisfied independently of any value of the energy as long
as it is nonpositive (due to 
2 � �8E). This property has a
dramatic implication on the bound states energy spectrum.
It implies that for any choice of negative energy a bound
state could be supported. However, the diagonalization
constraint on the matrix representation of the radial wave
operator dictates that E � 0. These observations have al-
ready been reported in the literature for the inverse square
potential [10]. Regularization procedures [10] and self-
adjoint extensions of the Hamiltonian [12] were introduced
to handle these irregularities. Now, Eq. (12) is a special
case of the three-term recursion relation of the continuous
dual Hahn orthogonal polynomials, Q�

k �!;�; 1
2� �

3F2�
�k;��i!;��i!
2�;��1=2 j1�, where � � ��1

2 [13]. Thus, we can
finally write the radial component of the wave function for
the bound state at energy E as
 

R�E; r� � BE!�2�r�
��=2��1e��r

X1
k�0

��k� 1�

��k� �� 1�

�Q���1�=2
k

�
!;
�� 1

2
;
1

2

�
L�k �2�r�; (13)

where the energy-dependent wave number � is defined by
E � � 1

2�
2.

Conclusion.—In the context of the tridiagonal represen-
tation of the single particle Hamiltonian associated with an
excess electron interacting with a frozen dipolar molecule,
we were able to obtain a closed form solution. The problem
was reduced to finding solutions of the resulting three-term
recursion relation for the expansion coefficients of the
wave function in a suitable square integrable basis. The
recursion relation for the angular wave function generated
polynomials that were not studied in the past. We refer to
them as the ‘‘dipole polynomials.’’ The radial component
of the wave function was also obtained analytically for the
scattering as well as bound states. Therefore, the noncen-
tral electric dipole potential cos�=r2 becomes a new ele-
ment in the class of exactly solvable potentials.

The calculation we have performed supports the exis-
tence of a dipole-bound anion for dipole moments higher
than a certain critical value. This value occurs when the
ground state energy approaches zero. Critical dipole mo-
ments were evaluated not only for the ground state, where

they agree with already known and experimentally verified
results, but also for excited states as well. Unfortunately,
there are no experimental data available for the excited
states and no comparison could be made with our numeri-
cal results.
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