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We consider stationary profiles of reactants’ concentrations and of reaction zones of an A� B! 0
reaction in a flat subdiffusive medium fed by reactants of both types on both sides. The structures formed
under such conditions differ strikingly from those in simple diffusion and exhibit accumulation and
depletion zones close to the boundaries and nonmonotonic behavior of the reaction intensity with respect
to the reactants’ concentrations at the boundaries. These findings are connected to an effectively nonlinear
character of transport in subdiffusive systems under reactions.
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Many phenomena in systems out of equilibrium corre-
spond to reactions between diffusing species and can be
described by reaction-diffusion equations. Examples range
from chemistry and physics (e.g., recombination of charge
carriers) to predator-prey relations in ecology. Various
systems however exhibit anomalous, non-Fickian diffusion
[1,2]. Recent findings on subdiffusive motion in gels [3], in
bacterial cytoplasm [4], and actin filament networks [5]
make investigations of reactions under subdiffusion espe-
cially interesting. The corresponding subdiffusion can be
modeled by continuous time random walks (CTRW) with a
heavy-tailed waiting time density  �t� / t�1��, yielding a
fractional subdiffusion equation instead of a Fickian one.
The microscopic approach to reactions under subdiffusion
is discussed, e.g., in [6,7]; however, it can hardly be used
for studying spatial structures. Reaction-subdiffusion
equations of different types have been proposed on phe-
nomenological basis [8–11]. References [12,13] showed,
however, that the reaction-subdiffusion equations do not
follow by simply changing a diffusion operator for a sub-
diffusion one. A rather general approach to reaction-
subdiffusion was proposed in Ref. [14]; applied to Turing
instability it revealed only quantitative differences with
reaction-diffusion.

In the present Letter we show that stationary structures
formed under subdiffusion differ vastly from those in
reaction-diffusion or may be absent under the conditions
when their reaction-diffusion analogs exist. We concen-
trate on the irreversible A� B! 0 reaction, which is
known to correspond to the simplest structure-building
reaction, and was experimentally realized in [15–17]
both in gel and in gel-free experiments. The situation
discussed below can be experimentally realized in a sub-
diffusive gel reactor (the system of Ref. [3]) or in a porous
medium in contact with two well-mixed reservoirs on both
sides. Here we confine ourselves to an effectively one-
dimensional situation, and assume the concentrations to
depend only on the x coordinate.

We first give the derivation of equations for stationary
reaction-subdiffusion conditions by generalizing the

scheme of Ref. [12]. In a CTRW a particle arriving at a
site i at time t0 stays there for a sojourn time t drawn
according to the probability density function  �t�.
Leaving the site it makes a step with probability 1=2 in
either direction. The generalized reaction-diffusion equa-
tions are based on two balance conditions for occupation
numbers Ai�t� and Bi�t�. The balance equation for A par-
ticles at each site reads

 

_A i�t� � j�i �t� � j
�
i �t� � RifA;Bg (1)

 � 1
2j
�
i�1�t� �

1
2j
�
i�1�t� � j

�
i �t� � RifA;Bg: (2)

where j�i �t� is the loss flux of A-particles at site i, i.e., the
probability for an A particle to leave i per unit time, j�i �t� is
the gain flux at the site, and RifA;Bg � �kAiBi is a
reaction term. The equations for A and B particles are
symmetric so that we concentrate only on Ai. A reaction-
subdiffusion equation is a combination of Eq. (2) and of the
equation for the loss fluxes j��t� following from the dis-
tribution of sojourn times  �t� and survival probability
P�t; t0�.

The particles leaving site i at time t either were at i
from the very beginning (and survived), or arrived at some
t0 < t and survived until t. The probability density to make
a step at time t, having arrived at t0, is given by  �t� t0�.
We have then j�i �t� �  �t�Pi�t; 0�Ai�0� �

R
t
0  �t�

t0�Pi�t; t
0�j�i �t

0�dt0, which, by using Eq. (1), can be rewrit-
ten in the form
 

j�i �t� �  �t�Pi�t; 0�Ai�0� �
Z t

0
 �t� t0�Pi�t; t0�

� � _Ai�t
0� � j�i �t

0� � kAi�t
0�Bi�t

0��dt0: (3)

The survival probability of A at i is given by the classical
kinetic equation d

dt Pi�t� � �kBi�t�Pi�t� and depends on
B�t� via

 Pi�t; t0� � exp
�
�k

Z t

t0
Bi�t0�dt0

�
: (4)

At this stage we assume the relative change in the concen-
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trations between two neighboring sites to be small which
allows for changing to a continuous coordinate x � ai,
with a being the lattice spacing:

 

_A�x; t� �
a2

2
�j��x; t� � kA�x; t�B�x; t�: (5)

Equation (5) together with Eqs. (3) and (4) and their
counterparts for B give the full system of equations for
time-dependent concentrations. We note that the integral
form in time of Eq. (5) can be transformed to a special case
of equations of Ref. [14].

Up to now we considered an initial-condition problem,
with A particles introduced into the system at t � 0. In the
case of normal diffusion the steady state (achieved if
the concentration of the particles at the boundaries of the
system are fixed by external sources) is described by the
same reaction-diffusion equations, with time derivatives at
the left-hand side put to zero. For the case of subdiffusion
the situation is more involved.

Let us assume that in the course of time the system
achieves a steady state with time-independent A�x� and
B�x�. This state is maintained through the sources at the
boundaries of the system, with no particle sources in the
interior. Let us label the particles according to the time t0
they were introduced into the system, so that, e.g.,
A�x; tjt0�dt0 is the concentration at point x at time t of A
particles introduced between t0 and t0 � dt0 (a partial
concentration of A). The partial concentration A�x; t0jt0�
of newly introduced particles is zero everywhere in the
interior of the system. The overall concentration of A
particles at site x is given by the integral

 A�x� �
Z t

�1
A�x; tjt0�dt0: (6)

In a steady-state A�x; tjt0� can only be a function of the
difference of the time arguments, i.e., of the elapsed time
te � t� t0 so that A�x; tjt0� � A�x; t� t0� and A�x� �R
1
0 A�x; te�dte. Since A�x� and B�x� are time independent,

the survival probabilities PA�x; t; t0� and PB�x; t; t0� in
reaction-subdiffusion equations are the functions of the
differences of their time arguments so that PA�x; t; t0� �
exp��kB�x��t� t0��. The integral in the equation for the
flux now takes the form of a convolution
 

j��x; tjt0� �  �t�PA�x; t� t0�A�x; t0jt0�

�
Z t

t0
 �t� t0�PA�x; t� t0�

� � _A�x; t0jt0� � j��x; t0jt0�

� kA�x; t0jt0�B�x��dt0; (7)

where j��x; t0jt0� are the loss fluxes for those A particles
which were introduced into the system at time t0. We now
pass to the Laplace domain with respect to te and denote
~A�x; u� �

R
1
t0
A�x; tjt0� exp��u�t� t0��dt. The Laplace

transform of the product ��t; x� �  �t� exp��kB�x�t� is

given by the shift theorem and is equal to ~��u; x� � ~ �u�
kB�x��, so that

 

~j��x; u� �
�u� kB�x�� ~ �u� kB�x��

1� ~ �u� kB�x��
~A�x; u�: (8)

Inserting this into the equations for the partial concentra-
tions A�x; te� in a steady state given by Eqs. (5) with t
changed to te and B�x; t� replaced by B�x�, we get in the
Laplace domain
 

u ~A�x; u� � A�x; t0jt0� �
a2

2
�
�u� kB�x�� ~ �u� kB�x��

1� ~ �u� kB�x��

� ~A�x; u� � k ~A�x; u�B�x�; (9)

where A�x; t0jt0� differs from zero only at the boundaries.
With A�x� � ~A�x; 0� the stationary concentration A�x� in
the interior of the system is given by

 

a2

2
�
kB�x� ~ �kB�x��

1� ~ �kB�x��
A�x� � kA�x�B�x� � 0; (10)

with the boundary conditions corresponding to the given
concentrations on the boundaries. For a Markovian case of
regular diffusion, corresponding to  �t� � ��1 exp��t=��,
one has ~ �u� � 1=�1� u�� so that this equation reduces
to �a2=2���A�x� � kA�x�B�x� � 0, a usual stationary
reaction-diffusion equation. In the non-Markovian case,
corresponding to subdiffusion, the waiting time distribu-
tion in the Laplace domain can be approximated by ~ �u� ’
1� ��u����1� �� for small u. This implies �B�x��	 1,
as is taken to hold in further computations. Equation (10)
now reads

 

a2

2

1

����1� ��
�B�x�1��A�x� � k�A�x�B�x� � 0: (11)

It is easy to see that the Markovian equation is a special
case of Eq. (11) for � � 1. The combination D� �
a2=2����1� �� stands for a (generalized) diffusion coef-
ficient. The full system of steady-state equations is given
by Eq. (10) and the corresponding equation for B. It is
interesting to stress that the system of equations with addi-
tional linear temporal operator acting on the Laplacian in
the case of initial-condition problem turns to a system of
reaction-diffusion equations with a nonlinear diffusion
term for a stationary state.

Turning to a proposed experiment with a gel reactor let
us consider a system on an interval (0,1) with given reac-
tants’ concentrations on the boundaries. Our reactor is in
contact with two well-mixed reservoirs containing reacting
mixtures at different concentrations on both sides. We fix
A�0� � B�1� � 1. For the sake of simplicity we consider
here a symmetric situation with A�0� � B�1� and A�1� �
B�0�. We take A�0� 
 A�1� and refer to the medium to the
left of the reactor as to the major source of A and to the one
to the right as to the minor source [except for the case
A�1� � B�0� � 1]. Because of symmetry we always have
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B�x� � A�1� x�. In Fig. 1 we show numerical results for
the steady-state Eqs. (11) obtained by a semi-implicit
relaxation algorithm [18].

The results for subdiffusion (� � 0:9) are compared to
the ones for normal diffusion (� � 1). The parameters are:
k � 0:01, D� � 1=2��1� �� for � � 0:9 and D� � 1=2
for � � 1. The A�0� � B�1� concentration is fixed to be
A�0� � 1, the other concentration varies from B�0� �
A�1� � 1 (symmetric case, when the CTRW-reactor sepa-
rates two stoichiometric reacting mixtures) to B�0� �
A�1� � 10�4. The rather high value of � � 0:9 was taken
in order to be able to place all curves on the same scale; the
results for smaller � are similar in form but strongly differ
in their absolute values.

In the symmetric case the behavior of reactants’ con-
centrations in reaction-diffusion and in reaction-
subdiffusion situations is very similar, with maximal con-
centrations achieved close to the boundaries (sources). For
asymmetric conditions the behaviors of concentrations in

the two cases differ strongly. One of the most marked
differences corresponds to accumulation of A particles in
the interior of the subdiffusive medium close to the major
source. Its counterpart is a depletion zone on the other side
of the system, corresponding to the symmetric accumula-
tion zone for B. The dependence of the height of the
accumulation peak on the strength of the minor source is
nonmonotonic: The reduction of the minor source strength
A�1� � B�0� leads first to its growth, and then to its motion
closer to the boundary accompanied by decay. This behav-
ior can be explained as follows. For equally strong A�0�
and B�0� sources A-particles react in vicinity of the bound-
ary before they could travel a considerable distance. For
weaker minor source some of A-particles can travel with-
out reaction and accumulate inside the system leading to
the formation of the peak. Since the effective mobility of
subdiffusing species decays in the course of time (the
number of steps per unit time goes as t��1), the effective
diffusion is caused by the reaction itself just as in the case
of immobile reactants [19,20]. For very weak minor
sources this effective diffusivity gets so small that the
peak moves closer to the boundary and eventually
disappears.

The smaller is the �, the more pronounced get the peak
and the depletion zone. To examine the dependence of the
effects on � we performed calculations for k � 0:001 and
A�1� � 0:05, a pair of parameters where pronounced peaks
exist for a wide range of �. The peaks’ maximal heights
and their positions are 3:49� 104 at 0.238 for � � 0:5,
7.98 at 0.225 for� � 0:6, 1.60 at 0.188 for� � 0:7, 1.01 at
0.100 for � � 0:8, and for � � 0:9 no local maximum
exists. The minima and their positions are 6:82� 10�12 at
0.763 for � � 0:5, 3:69� 10�5 at 0.736 for � � 0:6,
1:17� 10�3 at 0.775 for � � 0:7, 4:71� 10�3 at 0.80
for � � 0:8 and 6:99� 10�3 at 0.813 for � � 0:9.

Let us now turn to reaction intensities, Fig. 2. For the
symmetric case the reaction takes place mostly close to the
boundaries of the system. For smaller A�1� the reaction
zone starts to form in the middle of the system. However,
also here striking differences between the reaction-
diffusion and the reaction-subdiffusion cases are seen. In
the reaction-diffusion case the dependence of the form of
the reaction zone on A�1� is weak for small A�1�, and there
exists a clear limiting form for A�1� � 0. This behavior is
known and is used in the time-scale separation approach of
Refs. [21,22] based on the quasistatic approximation. For
reaction-subdiffusion the behavior of the reaction zone
with respect to its height is nonmonotonic. When lowering
A�1�, the maximum of reaction intensity first gets higher
and then starts to lower, and the distribution as a whole
broadens. The reason for this is quite evident. The sta-
tionary reaction zone exists only if it is fed by A- and
B-reactants on the corresponding sides. Both in the diffu-
sion and in the subdiffusion case the reaction zone is the
higher and the narrower the larger is the particles’ inflow
into the reaction area. This inflow is governed by the
effective diffusion coefficient of the corresponding reac-
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FIG. 1 (color online). Stationary particle concentration profile
A�x� for � � 1 (upper panel) and for � � 0:9 (lower panel);
A�1� � 1 (dashed line), 0.5 (dash-dot-dot line), 5� 10�2 (dash-
dot line), 5� 10�3 (dotted line), and 1� 10�4 (solid line), see
text for details. Note the peak’s displacement and the nonmono-
tonic behavior of its height with decreasing minor source
strength for the subdiffusive case; the behavior of the particle
concentration profile in regular diffusion is monotonic with
respect to the strength of the minor source and tends to a limiting
form for A�1� ! 0.
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tants, which, in the subdiffusive case, depends on the
concentration of the reacting counterpart. For A�1� �
B�0� � 0 the effective diffusion coefficient vanishes on
the corresponding side of the system preventing the inflow
of reactants from their major sources into the interior of the
system. The reaction zone blurs and fades out. In this case
no stationary front exists. This effect is also clearly seen
when considering the time evolution of concentrations
which can be done by discussing the properties of the
inverse Laplace transform of Eq. (9). This means that the
adiabatic approximation of Refs. [21,22] fails in subdiffu-
sion, and the analysis of the front’s motion in this case has
to be done anew.

Let us summarize our findings. We discussed the sta-
tionary form of reactants’ concentrations and of reaction
zones in the A� B! 0 reaction in a subdiffusive medium
fed by reactants on both sides. We show that the behavior
of the concentration and of the reaction intensity profiles in

subdiffusion differs strikingly from those in simple diffu-
sion. The non-Markovian character of subdiffusive motion
leads to an effectively nonlinear transport. This leads to the
formation of accumulation and depletion zones close to the
boundaries, and to nonmonotonic behavior of the reaction
intensity with respect to the strength of the minor source in
the anomalous case.
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FIG. 2 (color online). Stationary reaction intensity profile
kA�x�B�x� for � � 1 (upper panel) and for � � 0:9 (lower
panel). The parameters are the same as in Fig. 1, namely: A�1� �
1 (dashed line), 0.5 (dash-dot-dot line), 5� 10�2 (dash-dot line),
5� 10�3 (dotted line), and 1� 10�4 (solid line). In the diffusive
case the stationary reaction intensity profile approaches a limit-
ing form under decreasing minor source strength. For subdiffu-
sion reaction the height of the profile shows nonmonotonic
behavior with respect to this parameter. Note the difference in
vertical scales.
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