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We describe the use of reverse Monte Carlo refinement to extract structural information from angle-
resolved data of a Bragg peak. Starting with small-angle neutron scattering data, the positional order of an
ensemble of flux lines in superconducting Nb is revealed. We discuss the uncovered correlation functions
in the light of topical theories, in particular, the ‘‘Bragg glass’’ paradigm.
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While scattering data usually contain detailed structural
information about a system, the direct extraction of corre-
lation functions and microscopic quantities from the data is
often difficult. This has led to the development of computa-
tional methods such as reverse Monte Carlo (RMC) refine-
ment [1] that work by going from possible structures to the
data while enforcing obvious physical conditions. This is
exemplified by the derivation of magnetic moment orien-
tations from total neutron scattering data [2]. Up to now,
RMC refinement has been applied predominantly with
measurements as a function of the magnitude of the scat-
tering vector k from powder samples [2], amorphous al-
loys [3], or liquids [4]. Here we extend the RMC approach
to provide structural insight into weakly disordered crys-
talline samples, using angle-resolved scattering data ob-
tained by rotating the sample through a Bragg peak. We
examine the Abrikosov flux line (FL) lattice of a Type-II
superconductor [5], accurately reproducing small-angle
neutron scattering (SANS) observations. Our extended
technique is readily applicable to other two-dimensional
(2D) systems.

Our motivation is to test competing theories on the
influence of disorder upon the FL arrangement. Long
ago, Larkin showed that any disorder—as induced by
pinning of FL’s to randomly distributed defects or impuri-
ties in the underlying crystal—would destroy long-range
order due to a linear increase of elastic distortions with FL
separation [6]. More recently it was realized that for weak
quenched disorder, a purely Gaussian model with random
forces becomes inadequate beyond the Larkin length R�
where displacements become comparable to the character-
istic length scale � of the pinning potential [7–9]. Beyond
the Larkin regime the FL’s are anticipated to begin to
behave collectively as an elastic manifold in a ‘‘random
manifold’’ (RM) regime [7]. At asymptotic scales larger
than the crossover length RA, in the absence of disloca-
tions, the FL lattice periodicity [8] may result in a much

slower, logarithmic increase of elastic distortions with
distance giving Bragg peaks and algebraically decaying
translational order—the so-called Bragg glass (BrG)
phase [9]. Under strong disorder or high magnetic fields
the BrG is destroyed by dislocations [10]. The properties of
the ensuing vortex glass phases have yet to be resolved by
experiment, though several isotropic, hexatic, and ‘‘frac-
tured’’ phases have been conjectured [11–13]. A previous
SANS study [14] has claimed to demonstrate the existence
of a BrG phase from an analysis of Bragg peak intensity
with the aid of a theoretical form factor. In contrast, we use
a high-resolution SANS geometry particularly sensitive to
in-plane FL correlations; our RMC approach then uncovers
structural information contained in the peak shape without
requiring an a priori model.

The principle of operation of RMC refinement, detailed
elsewhere [1], is that positions of scattering centers in an
ensemble are modified using a Monte Carlo procedure
whereby a random modification is always accepted if the
least-squares goodness-of-fit �2 is reduced, or otherwise
with a probability exp����2=p�. Traditionally the weight-
ing p � 2 [1]. The calculated scattered intensity Icalc�k� is
the convolution of the instrument resolution Y�k� and the
elastic structure factor S�k�

 Icalc � FY ? S with S�k� �
��������
XN

j

e�ik�rj

��������
2
; (1)

where the constant of proportionality F contains the form
factor of an individual scatterer and rj is the position of the
jth scatterer averaged over dynamical disorder. We take F
as independent of jkj over the small range of jkj consid-
ered here.

In previous RMC implementations [1–4] a Bragg reflec-
tion associated with reciprocal lattice vector G has been
characterized via k0 k G where k � G� k0. Here we
consider k0 tangential to G and examine the shape of the
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rocking curve measured as the sample is rotated by the
rocking angle ’ through the Bragg peak at ’0 (Fig. 1). We
show how our RMC refinement generates a rocking curve
Icalc�’� from S�k� in Fig. 2(a).

Our FL measurements were performed on the SANS-II
instrument at the Paul Scherrer Institut using neutrons of
mean wavelength � � 10:6 �A and spread ��=� ’ 0:06,
collimated over a distance of 6 m from our sample. The
latter was an unannealed niobium single-crystal disc of
diameter 12 mm, thickness 4 mm, with the disc and crystal
[111] axes coincident, mounted inside a fixed cryomagnet
providing a field of 200 mT along the disc axis and per-
pendicular to the neutron beam. A motorized sample stick
with a cryogenic gearbox was used to rotate the sample by
’ about the disc axis. To generate the rocking curve
Iexp�’�, neutrons diffracted at twice the Bragg � in the
lower half of the vertical scattering plane were integrated
over an area roughly equal to the incident beam spot size
on the 2D detector placed 6 m from the sample. The
measured Bragg spot size of 0.07� is comparable with
the angular spread � ’ 0:06� of the incident beam, and
considering ��=�, this indicates poor resolution �k0=G �
0:1 for k0 k G. For k0 tangential to G, our setup with field
perpendicular to beam yields a much better resolution Y�’�
that is effectively Gaussian of width � (Fig. 1), correspond-
ing to �k0=G ’ 0:001. The FL ensemble was formed by
applying the field above Tc ’ 9:2 K and cooling to 2.6 K;
weak disorder results from the small concentration of
residual impurities in the unannealed Nb crystal, as re-
flected by an upper critical field Bc2�0� � 460 mT of our
sample slightly bigger than Bc2�0� � 430 mT typical of a
pure sample [15].

As the FL’s in Nb are effectively nearly straight rods of
macroscopic length, we contract the longitudinal dimen-
sion of rj ! �r?j in (1), so �r?j represents the average posi-
tion of the jth FL in the plane perpendicular to the field

direction. This averaging is valid if r?j varies sinusoidally
or as a (Gaussian) random variable along the FL length,
over the scale of the neutron coherence length [16] �
10 �m	 FL lattice constant a0 � 109 nm at 200 mT.
A static ‘‘Debye-Waller’’ factor F2

DW�jkj� 
 e�k2hr?2i is
thus introduced into (1) and is absorbed by the factor F.

In Fig. 1 we illustrate the excellent agreement of the
RMC generated neutron intensity Icalc�’� with the experi-
mental data Iexp�’� after a total of 980N accepted moves.
Each generated move is in a random direction and ampli-
tude �0:01a0. The RMC ensemble has size N � 40015
FL’s for all results depicted in the figures and is initiated as
a near-perfect hexagonal FL lattice at the observed flux
density b � 200 mT constructed by perturbing an ideal
lattice by a few (10 per FL) all-accepted moves. N 	
2000 is required to ensure that the intrinsic angular peak
width ’1=

����
N
p

of the finite RMC configuration is less than
that of our neutron data. We find the usual choice of p � 2
[1] for the weighting of accepting a �2-increasing move
leads to quickly decaying positional order because almost
every generated move is accepted. We use p ’ 0:03, limit-
ing the fraction of proposed �2-increasing moves that are
accepted to � 50%. We achieve similar results—as indi-
cated by similar correlation functions calculated from the
RMC ensembles—for reasonable variation of all computa-
tional parameters.

No knowledge of the form factor is needed if the value of
F in (1) is chosen to minimize �2 throughout the RMC
refinement. However, the order then fades slowly (Fig. 3)
even after �2 has been minimized, becoming unperceiv-
able after � 105N moves. Always working to maximize
entropy, the RMC refinement is able through freedom in F
to shift scattering out of the first-order Bragg peak into the
large fraction of remaining reciprocal space not encom-
passed by experimental data [Fig. 2(a)]. Even then, every
RMC ensemble generated reproduces accurately the shape
of the experimental rocking curve and from Fig. 3 we see
they all yield the same form of the correlation functions.
The slow decay of order with RMC run time can be re-
strained by applying local physical conditions on FL posi-
tions, such as a planarity constraint forbidding formation
of dislocations by confining each FL to a cage defined by
its six nearest neighbors [17]. We do not impose this
constraint since only 35 of the 40 015 FL’s fall outside
their nearest-neighbor cages after 610N moves, the frac-
tion increasing to 0.7% after 1740N moves. This strongly
implies our RMC results are consistent with a
weakly disordered FL lattice free of dislocations.

The diminution of positional order is halted by bounding
the scale factor F in (1) to lie below a certain maximum
value m. For our results in Figs. 1 and 2 and those denoted
by ‘‘F bounded’’ in Fig. 3, F is limited below a value m
that corresponds to a form factor h10 � 70 mT for the (10)
FL Bragg reflection, estimated using the expected inte-
grated intensity from 40 015 perfectly arranged FL’s in
(1). Even though the static Debye-Waller factor FDW was
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FIG. 1. Angular dependence of the diffracted neutron intensity
from the flux line ensemble. The circles depict the experimental
rocking curve Iexp�’�, while the solid line indicates Icalc�’�
calculated from a RMC ensemble of N � 40 015 flux lines, after
smoothing over the instrument resolution Y�’� illustrated by the
thin dashed line. The inset replots these data on a double
logarithmic scale; the thick dashed line is a guide to the eye
showing an algebraic decay.
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ignored for this estimate, it is consistent with h10=b �
10�1 found in early Nb neutron experiments [18].

In Fig. 3 we show the derived displacement correlator
B�R� � hfuj � ulg2i, translational order cG�R� �
hexp�iG � fuj � ulg�i and orientational order g6�R� �
hexp�i6f�j ��lg�i where uj 
 �r?j �Rj is the displace-
ment of the jth FL; R � jRj �Rlj is the distance between
jth and lth FL’s of the corresponding perfect FL lattice; �j

is a nearest-neighbor bond angle relative to a fixed axis.
h. . .i denotes the average over the ensemble and over all six
first-order reciprocal lattice vectors G or nearest-neighbor
bonds where appropriate. At least two regimes are evident
from the B�R� [Fig. 3(a)] and cG�R� [Fig. 3(b)]. To date, the
scale dependence of correlation functions has only been
explored by elastic theory [7,9,19]. Accordingly we fit
two-piece functions that are appropriate for describing
RM and BrG behavior: B�R� � �0R2�Bh��R� � f�1 lnR�
�2gh��R� and cG�R� � 	0 exp��R2�c=�c�h��R� �
	1R

�
Gh��R�; h��R� �
1
2�

1
2 tanh�fR� RAg=a0� approx-

imates a Heaviside step at the crossover RA. These forms
are fitted over 0<R< 80a0; the correlation function cal-
culation is affected at large R by the edges of the RMC
ensemble that has radius 105a0.

The correlation functions shown in Fig. 3 are described
by run-invariant fit parameters RA � 15a0, �c ’ 0:6, �c ’
10a0, �B � 0:2, and 
G � 0:9. We fit the orientational
order by an algebraic form g6�R� 
 R�
6 . The persistence
of long-range orientational order (
6 � 0:07� 
G) while
cG�R� falls more rapidly implies extended correlations in
nearest-neighbor orientation, characteristic of the hexatic
phases [12] observed here. At small scales R< RA our data
strongly imply a RM regime, where FL’s are collectively

pinned but do not compete with each other for the same
disorder energy minima. cG�R� is seen to decay exponen-
tially [Fig. 3(b)] and displacements increase with rough-
ness �B � 0:2 [Fig. 3(a)], in excellent agreement with
predicted RM regime values of 1=6 [20], 1=5 [7,21], and
0.17 [19]. Noting that crossover from Larkin to RM occurs
when B�R�� ’ �2

0, then with �0 � 390 �A in Nb we expect
R� � 3a0. At these small scales, the poor agreement seen
in Fig. 3 to our fits describing larger scale regimes can thus
be accounted for by a Larkin regime on the edge of our
measurable limit.

At large scales R> RA, the observed algebraic decay of
the Bragg peak tails with exponent 
S ’ 2:5 (Fig. 1), and
of cG�R� [Fig. 3(b)] with exponent 
G � 0:9 are in line
with the approximation 
S � 3� 
G expected for scatter-
ing vectors k in the vicinity of G where the structure factor
is roughly the Fourier transform of cG�R� [19]. These
algebraic decays and the slow logarithmic growth of dis-
placements B�R� [Fig. 3(a)] are consistent with a quasior-
dered BrG phase. However, our 
G � 0:9 only
approximates the predicted values of 1 and �2=9 [9], and
1.14 [19]. We note the region around RA is ill described by
our two-piece fits [Fig. 3(a)]; details of the RM–BrG
crossover regime have yet to be explored by theory. Our
value of B�RA� � 0:2a2

0 [Fig. 3(a)] also contrasts with the
predicted B�RA� ’ a2

0. We point out that in Nb the FL cores
are larger compared to a0 than in other superconductors, so
the crossover RA where FL’s start competing for the same
disorder energy minima may occur at smaller scales.

From Fig. 2(b) it is evident that FL’s group together in
regions of similar displacements, with large relative dis-
placements between these regions. Such ‘‘fracturing’’ is
also seen in large-scale decoration images [22]. In this

FIG. 2 (color). 2D (in-plane) maps from a RMC ensemble of N � 40 015 flux lines after 980N moves. In (a) the structure factor S�k�
defined by (1) is plotted on a logarithmic color scale. The solid white arcs depict the reciprocal space encompassed by our
experimental rocking curve (Fig. 1). The hexagonal FL lattice symmetry is preserved by duplicating our data at three angles 60� apart.
Between the first-order Bragg peaks zero scattered intensity was observed within experimental error. Thus, in these regions (marked by
dotted orange arcs), the intensity to be fitted was set to zero with �2 determined by the error. In calculating the neutron intensity Icalc,
S�k� is first integrated radially as shown by the white radial line, to account for the poor instrument resolution in this direction, before
convolution with the much better tangential resolution Y�’�. In (b) we show the displaced FL positions in a typical portion of the RMC
ensemble. The color of each FL denotes the magnitude (lightness) and direction (hue) of its in-plane displacement u�R� from the
corresponding perfect lattice, as described by the color wheel (inset) where white circles mark displacements of 0:2a0 and 0:4a0, and
white radial lines depict the lattice basis vectors.
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fractured lattice scenario for the dislocation-free quasi-
ordered phase, the regions of dimension Rd � 1 �m (this
is independent of our RMC ensemble size N) ef-
fect a finite loss-of-neutron-correlation volume [16],
giving a nondivergent Bragg peak of FWHM � 1� 	
instrument resolution, in sharp contrast to the diverging
Bragg peaks predicted for the BrG [9]. The elastic BrG
theory may fail due to nonlocal effects that preserve long-
range orientational order, e.g., favored nearest-neighbor
directions originating from underlying anisotropies of the
superconductor. At higher fields or stronger disorder
strengths we envisage dislocations most likely form at
boundaries between the fractured regions of the quasi-

ordered phase observed, resulting in a multidomain vortex
glass [13].

In summary, we have demonstrated a RMC refinement
to examine disordered crystalline samples using angle-
resolved scattering data. In many applications the form
factor is well defined. For FLs this is not the case, yet
our technique generates dislocation-free FL ensembles that
all accurately reproduce the Bragg peak shape, and all
yield similar correlation function forms. At small scales
our data strongly indicate a random manifold regime of
collectively moving FLs. At large scales there is some
evidence for a Bragg glass phase; however, ‘‘fracturing’’
of the FL ensemble is also observed.
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FIG. 3 (color online). Correlation functions derived from
RMC ensembles of N � 40 015 FL’s with the scale factor F in
(1) chosen to minimize �2 after 610N moves (red diamonds) and
1740N moves (blue squares), and with F bounded as described
in the text after 980N moves (green circles). The displacement
correlator B�R� is shown in (a); the inset shows the goodness-of-
fit statistic �2 describing how well the calculated intensity
Icalc�’� reproduces the experimental data Iexp�’�. (b) shows
the translational order cG�R�. Here only one data set is plotted
as the results overlap on the linear scale; the three data sets are
replotted on a double logarithmic scale in the inset of (b), where
the dashed line is a guide to the eye highlighting an algebraic
decay. (c) shows the orientational order g6�R�. Note that for
clarity, the points cG�0� � 1 and g6�0� � 1 lie outside the scales
used here. The colored solid lines in these plots are fits as
described in the text.
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