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We show that the spin degree of freedom plays a decisive role in the phase diagram of the �T � 1
bilayer electron system using an in-plane field Bk in the regime of negligible tunneling. We observe that
the phase boundary separating the quantum Hall and compressible states at d=‘B � 1:90 for Bk � 0 (d:
interlayer distance, ‘B: magnetic length) steadily shifts with Bk before saturating at d=‘B � 2:33 when the
compressible state becomes fully polarized. Using a simple model for the energies of the competing
phases, we can quantitatively describe our results. A new phase diagram as a function of d=‘B and the
Zeeman energy is established and its implications as to the nature of the phase transition are discussed.
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Two-dimensional electron systems under a strong per-
pendicular magnetic field have been continually revealing
a wide variety of new phenomena that arise from electron-
electron interactions. Multilayered systems have further
opened a new realm for many-body effects as a conse-
quence of the layer degree of freedom. In particular, a
bilayer system at total filling factor �T � 1 involves tre-
mendously rich physics [1]. An experimental phase dia-
gram established by Murphy et al. [2] shows that the
system undergoes a phase transition between quantum
Hall (QH) and compressible states as a function of two
parameters: the tunneling gap �SAS and d=‘B, the latter
representing the ratio between the intra- and interlayer
Coulomb energies, where d and ‘B are the interlayer
distance and the magnetic length, respectively. Of particu-
lar interest is the limit of �SAS ! 0, where a purely many-
body QH state with spontaneous interlayer phase coher-
ence emerges below a critical value of d=‘B. This new state
can be described as an excitonic condensate [3–5] or a
pseudospin ferromagnet [1,6], with the pseudospin encod-
ing the layer degree of freedom. Experiments have estab-
lished that for �SAS � 0 the QH-compressible phase
transition takes place at d=lB � 2 [2,7], though its exact
nature remains an open issue [7–10].

An in-plane field Bk has often been used as an additional
tool to modify the properties of bilayer systems [2,6,11]. Its
primary effect is to suppress the interlayer tunneling and
reduce �SAS [12]. The tunneling suppression can lead to
the destruction of the QH state when the system is close to
the phase boundary with the compressible state [11].
Additionally, an anomalous response of the �T � 1 QH
state to Bk, where the quasiparticle gap first drops abruptly
and then stays at a finite value, is observed [2] and inter-
preted in terms of a commensurate-incommensurate tran-
sition [13]. In these studies, only the effects of Bk on the
orbital part of the electron wave function have been con-
sidered, under the assumption that the spin degree of free-
dom is frozen by the magnetic field. Although recent
experiments indicate that this assumption no longer holds

in the relevant magnetic field region [14,15], it is still
generally understood that spin plays only a minor role in
the property of the �T � 1 system.

In this Letter, we demonstrate that spin plays a decisive
role in the phase diagram of the �T � 1 system in the
regime of negligible tunneling. In marked contrast to the
previous results for finite �SAS, we find that the QH state is
strengthened by applying Bk and can be even restored at
high densities where the QH effect is absent for Bk � 0.
Upon increasing Bk � BTOT sin� by tilting the sample
by an angle � away from the external field BTOT, the
phase boundary shifts toward higher values from d=‘B �
1:90 at � � 0� and eventually saturates at d=‘B � 2:33 for
� * 60� (BTOT * 8 T). A simple model considering the
Coulomb and Zeeman energies of the two phases pro-
vides an excellent fit to the observed Bk dependence,
demonstrating that the increased Zeeman energy makes
the partially polarized compressible state energetically
unfavorable at high BTOT. The saturation at large Bk in-
dicates the full polarization of the compressible state. A
new phase diagram as a function of d=‘B and the Zeeman
energy is established and its implications as to the nature of
the phase transition are discussed.

The sample, a modulation-doped double quantum well
grown by molecular-beam epitaxy, consists of two 18-nm-
wide GaAs wells separated by a 10-nm-thick barrier con-
sisting of alternating layers of AlAs (2.1 nm) and GaAs
(0.56 nm). �SAS for this structure is calculated to be
150 �K. A Hall bar mesa was made by conventional
photolithography. In the as-grown situation, only the upper
layer is populated with an electron density of 5�
1010 cm�2 and a low-temperature mobility of 1�
106 cm2=V s. By applying front- and back-gate biases,
the electron densities in the upper and lower layers can
be controlled independently. To confirm that the tunneling
is negligible, additional gates (hereafter isolation gates) are
included so that the upper layer is disconnected from the
contacts except the one for the ground. We work at the
balance condition, with equal densities in the two layers,
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and tune d=‘B through the total electron density nT . We
take for the interlayer distance d the well center-to-center
distance of 28 nm, which has an uncertainty of 5%. Unless
otherwise specified, measurements were performed with-
out applying isolation gates and at a temperature of about
100 mK with the sample placed in the mixing chamber of a
dilution refrigerator.

Figure 1 shows the longitudinal (Rxx) and Hall (Rxy)
resistances taken at � � 0� as a function of the magnetic
field for a total density nT � 6:8� 1010 cm�2. Solid lines
correspond to the standard configuration, where both layers
are connected in parallel. At this density, the �T � 1 QH
state is well developed because the parameter d=‘B � 1:83
is below the critical value in our sample, d=‘B � 1:90.
When the upper layer is disconnected using the isolation
gates (dashed lines), at low fields the Hall resistivity is
doubled with plateaus at twice as high values, reflecting the
electron density of a single layer. This observation con-
firms that the tunneling is negligible in this sample. At
�T � 1, Rxy suddenly returns to the bilayer value of h=e2,
indicating that the �T � 1 QH state bears spontaneous
interlayer phase coherence, as reported in Refs. [3–5,7].

Figure 2 displays Rxx and Rxy against perpendicular field
B? taken at a higher density of nT � 8:5� 1010 cm�2,
which corresponds to d=‘B � 2:05. As expected for this
high value of d=‘B, the �T � 1 QH state is not present at
� � 0� (dashed lines). The traces change drastically when
the sample is tilted at � � 52� (solid lines): the �T � 1 QH
state is restored and a clear minimum in Rxx as well as a
plateau in Rxy at �T � 1 become apparent. We emphasize
that the electron density is kept constant and the only effect
exerted on the system by tilting is to introduce an in-plane
field component. The inset of Fig. 2 illustrates the evolu-

tion of the Rxx minimum with tilt from � � 6� to 58�.
From the continuous evolution of the Rxx minimum, it is
clear that the QH state is stabilized by the in-plane field.
The observed behavior is totally opposite to the previous
reports for samples with large �SAS, where the �T � 1 QH
state is known to be weakened by an in-plane field. Our
calculations of the wave function under a tilted magnetic
field show that the change in the effective interlayer dis-
tance is less than 0.1%. Considering this result and the
negligible tunneling in our sample, we can rule out the
effects of Bk on the orbital part of the wave function.

To evaluate the effect of Bk on the stability of the �T � 1
QH state, we examined for different � the density at which
the QH state collapses into the compressible state. Figure 3
shows the evolution with density of Rxx around �T � 1,
plotted against B?. Top and bottom panels show results for
� � 0� and 52�, respectively. At � � 0�, the �T � 1 QH
state survives up to B? ’ 3 T, corresponding to d=‘B �
1:9, a value consistent with previous reports [2,7,14]. At
� � 52�, the QH state is still well preserved at B? � 3 T
and the transition occurs at a much higher field of B? ’
4 T, which corresponds to an unexpectedly high value of
d=‘B � 2:2. The same is confirmed by the activation gap
measurements as shown in the inset of Fig. 3(a), demon-
strating that the gap, which vanishes at B? � 3:10�
0:05 T for � � 0�, remains finite up to 4:60� 0:05 T
when the sample is tilted at an angle of 61�.

We have determined the critical density nT � eB?=h at
which the Rxx minimum disappears for ten different angles
from � � 0� to 62�; the results are shown in Fig. 4(a) as a
function of BTOT. Solid symbols represent the maximal
density at which the QH state is still observed and open
symbols the density at which the QH state has disappeared.

FIG. 1. Longitudinal and Hall resistances as a function of
magnetic field at a total density of nT � 6:8� 1010 cm�2, which
corresponds to d=‘B � 1:83. Solid (dashed) lines are obtained
without (with) an isolation gate bias.
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FIG. 2. Rxx as a function of the perpendicular magnetic field,
for two angles, � � 0� (dashed lines) and 52� (solid lines), at the
fixed density of nT � 8:5� 1010 cm�2, corresponding to
d=‘B � 2:05. Inset: evolution of the minimum at �T � 1,
upon tilting the sample by � � 6�, 30�, 44�, 49�, 52�, and 58�.
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Figure 4(a) shows the intriguing finding that an increase in
BTOT moves the transition to higher densities until it satu-
rates at a value of nT � 11� 1010 cm�2 for BTOT � 8 T
(� � 58�). We speculate that the observed behavior is due
to the Zeeman energy, an indication that the competing
states at the phase boundary have different degrees of spin
polarization. This assertion is in line with the recent report
of Spielman et al. [14], who have shown that the spin
polarization of the QH state is higher than that of the
compressible state.

To confirm this idea, we develop a simple model con-
sidering the Coulomb and Zeeman energies of the QH and
compressible states. At zero temperature, the phase tran-
sition occurs when the energies of the two states become
equal, a condition that can be modeled as

 �
e2

4��‘B
	 �

e2

4��d
�
EZ
2
� 
1	 p2�

EF
4
� p

EZ
2
; (1)

where the left- and right-hand sides correspond essentially
to the QH and compressible states, respectively. The terms
proportional to ‘�1

B and d�1 represent the intra- and inter-
layer Coulomb energies, respectively, where � and � are
unknown prefactors and � the dielectric constant of GaAs.
EZ=2 is the Zeeman energy of a fully polarized system, as
commonly accepted for the �T � 1 QH state (EZ �
g�BBTOT, with g � 0:44 for GaAs). We further assume
that the compressible state consists of two nearly indepen-
dent layers at � � 1=2, which in the composite-fermion
(CF) framework can be effectively mapped onto a Fermi
liquid at zero magnetic field [16]. Interlayer interactions in
the compressible state, if present, can be absorbed in the
d�1 term on the left-hand side, which then represents the

difference in the interlayer energies between the two
phases. Additionally, the single-layer � � 1=2 state is
known to be only partially polarized at low fields [17].
These considerations allow us to express the intralayer
Coulomb energy of the compressible state in terms of the
kinetic energy of a partially polarized paramagnet with a
Fermi surface for each spin component. This is given by
the term 1

4 
1	 p
2�EF, where p � 
n" � n#�=n � EZ=EF is

the spin polarization and EF � 2�@2n=mCF the Fermi
energy of a fully polarized CF system, with n � nT=2
the density per layer and mCF the CF effective mass.
Taking EC � e2=4��‘B as a unit of energy, Eq. (1) can
be written in the following dimensionless form:

 �	 �
‘B
d
� �

1

4C

�� C�2 	

C
2
; (2)

where � � EZ=EC and C � EF=EC are the normalized
Zeeman and Fermi energies, respectively. Using the rela-
tion mCF /

�������

B?
p

[18], C is found to be a constant, and the
model allows a simple analytic expression of ‘B=d as a
quadratic function of � for �< C. When the system
becomes fully polarized at � � C (p � EZ=EF � 1),
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FIG. 4. Transition point between the compressible and QH
states plotted in three different ways. (a) Critical density as a
function of total magnetic field. Inset) Critical ‘B=d as a function
of the normalized Zeeman energy �. (b) Phase diagram in the
d=‘B-� space. Solid (open) circles correspond to the QH (com-
pressible) state and lines to the fit result. The dashed line
indicates � � C.
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FIG. 3. Rxx around �T � 1 at different densities as a function
of the perpendicular magnetic field. Two sets are plotted for
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Eq. (1) comes to be independent of the Zeeman energy and
‘B=d reduces to a constant. In the inset of Fig. 4(a), we
replot the data as ‘B=d against �, and we fit them using
the proposed function, with �, �, and C as fitting pa-
rameters. The fitting with the model is excellent, yielding
� � 0:024� 0:001, � � �0:025� 0:002, and C �
0:026� 0:001. The negative sign of � is inherent to the
stability of the QH state at lower fields. FromC � 0:026�
0:001, we determine the CF effective mass mCF � 
0:52�
0:02�

�������

B?
p

m0 (m0 is the electron mass in vacuum). The
prefactor of 0.52 is in reasonably good agreement with the
theoretical value of 0.6 [18] and the experimental value of
0.74 [17] for a single layer at � � 1=2, if we consider the
different sample structures.

Based on our experimental data and analysis, we are
able to construct a new phase diagram in the d=‘B-� plane
at �SAS � 0 [Fig. 4(b)], complementary to the standard
phase diagram in the d=‘B-�SAS plane [2]. The new phase
diagram reveals that the intrinsic transition point for the
ideal spinless system is d=‘B � 2:33, 23% higher than
d=‘B � 1:90 at � � 0�. This has important implications
on the nature of the phase transition. Using the parameters
obtained from the fitting, the spin polarization of the
compressible state at the transition is estimated to be
only p � 0:4 for � � 0�, in contrast to p � 1 for the QH
state. By a general argument, a level crossing between
states with different spin configurations implies a first-
order transition. This assertion is consistent with the strong
enhancement of longitudinal drag at the transition [7] and
its explanation in terms of the coexistence of compressible
and incompressible domains [9]. We also note that the
collapse of the �T � 1 QH state is often explained as being
due to a charge-density instability associated with a soft-
ening at a finite wave vector of a collective mode [19,20].
However, if the mode does not involve spin as usually
accepted [6], it is independent of the Zeeman energy and
therefore should be irrelevant to the transition to the par-
tially polarized compressible state. This in turn suggests
that the experimentally observed transition is governed by
a different mechanism. On the other hand, in the limit of
high magnetic fields, the transition from the QH state to the
fully polarized compressible state does not necessarily
have the same character as the one to the partially polarized
compressible state. When p � 1, the Zeeman terms in
Eq. (1) cancel each other and the phase boundary is deter-
mined solely by the Coulomb terms, making the above
argument irrelevant. In fact, theories predict various sce-
narios for a spinless system [8,10].

The diagram in Fig. 4(b) additionally presents many
intriguing suggestions. First, the standard d=‘B-�SAS

phase diagram would have to be modified to incorporate
the spin effects. Second, in the limit of �! 0, where one
expects a new QH state with both spin and pseudospin
broken symmetry, the phase boundary should be at d=‘B �

1:5. Experimentally, this limit can be achieved by applying
a hydrostatic pressure [21]. Third, the striking role of spin
on the phase diagram suggests that hole systems, which
have a larger g factor and hence a larger Zeeman splitting
[22], may behave differently from electron systems; this
may explain some of the differences in the behavior of hole
systems [4].

In conclusion, we have demonstrated that the QH-
compressible phase boundary in the �T � 1 system is
strongly dependent on the spin degree of freedom, being
the nature of the phase transition contingent on the spin
polarization of the compressible state.
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