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Micron-sized objects confined in thin liquid films interact through forces mediated by the deformed
liquid-air interface. These capillary interactions provide a powerful driving mechanism for the self-
assembly of ordered structures such as photonic materials or protein crystals. We demonstrate how optical
micro-manipulation allows the direct measurement of capillary interactions between mesoscopic objects.
The force falls off as an inverse power law in particles separation. We derive and validate an explicit
expression for this exponent whose magnitude is mainly governed by particle size. For micron-sized
objects we found an exponent close to, but smaller than 1, making capillary interactions a unique example
of strong and very long ranged forces in the mesoscopic world.
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It is a well-known fact that small objects floating on a
liquid surface cluster together. Bubbles on the surface of a
soap solution [1] or cereals in a bowl of milk [2] attract
each other with long range forces arising from the interface
deformation under particles weight (or buoyancy for bub-
bles). Close packed configurations for such macroscopic
objects are found to minimize gravitational potential en-
ergy. Shrinking lengths to the mesoscopic scale, particle
weight soon becomes too weak to produce any significant
deformation and hence attraction. However, if the particles
are confined in thin liquid films, a deformation of the
interface is unavoidable. This is the case, for example, of
a colloidal suspension drying on a solid substrate, or dis-
persed in a freestanding thin film. When the thickness of
the liquid film becomes smaller than the bead diameter, the
interface has to deform with an increase in surface energy.
The liquid interface will then react on the particles with
forces aiming to reach a minimum surface (energy) con-
figuration, usually corresponding to close packed two di-
mensional crystals [3]. Such phenomena, already observed
by Perrin in 1909 [4], have attracted considerable interest
in recent times due to their relevance for the engineering of
photonic materials [5] and protein crystallography [6].
Consequently, a strong effort has been devoted to the
theoretical analysis of the involved forces, resulting in a
long series of papers reviewed in [7]. Prediction for macro-
scopic objects have been confirmed by experiments on
immersed cylinders [8] or particles attached to holders
[9]. However, no experiment so far has been able to
directly measure capillary forces between an isolated pair
of mesoscopic objects, although it is in the mesoscopic and
nanoscopic realm that this effect finds the most interesting
applications. Any physical contact with the particles would
inevitably produce a significant deformation of the liquid-
air interface and dramatically affect the interaction. On the
other hand, due to the long-ranged hydrodynamic interac-
tions in thin films, particle mobility is very sensitive to
interparticle distances and force measurements are difficult

to deduce from trajectories. A static, highly noninvasive
method is required for a direct and reliable measurement of
these interactions.

In this Letter we demonstrate how optical micromani-
pulation [10] allows the precise measurement of capillary
interactions between 2 �m-sized spheres confined in a
freestanding thin liquid film. Working in a freestanding
liquid film is essential for accurate capillary force deter-
minations since no particle-substrate interactions have to
be taken into account. Holographic optical trapping [11] is
used to scan the distance between particles while gauging
the attractive interaction with the optical restoring forces.

The force law can be anticipated by calculating the
surface tension forces acting on a pair of spherical objects
confined in a thin liquid film. Kralchewsky et al. [12]
derived the shape of the meniscus around the two particles
using the method of matched asymptotic expansions. An
implicit expression for the force law was obtained, whose
evaluation requires the numerical solution of a system of
nonlinear equations in the accessible system parameters.
Confining ourselves here to mesoscopic objects, we show
that Kralchewsky solution for the force can be very well
approximated by an inverse power law whose parameters
have an explicit expression in terms of the system’s physi-
cal properties. We assume complete wetting (zero contact
angle) with the liquid surface departing from a contact ring
of radius rc with continuous slope angle  c [Fig. 1(a)].
Surface tension will exert a force on the contact ring whose
resultant is orthogonal to the ring plane and has a modulus

 F � �2�rc sin c; (1)

where � is the liquid-air surface tension (� ’ 35 mN=m in
our experiment). For small gradients rc � a sin c � a c,
zc � a�1� cos c� ’ a 

2
c=2, and the force F ’ 4��zc is

then proportional to zc with a strength of order 1 nN=nm.
The order of magnitude of other forces into play is 1 pN for
particle’s weight and 100 pN for the maximum optical
force exerted by our trap. The interface is supposed to be
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flat and horizontal far from the particle and we indicate
with ��r� the local vertical displacement of the interface
from this reference surface. In the small gradient approxi-
mation, Laplace equation for the pressure drop across the
freestanding portion of the upper surface (r > rc) reads
[13]

 �r2��r� � �g��r�; (2)

where � is the liquid density and g the acceleration due to
gravity. The only axisymmetric solution to (2) vanishing at
infinity takes the form [14]:

 ��r� � �
tan c
q

K0�qr�
K1�qrc�

; (3)

where Ki�x� is the modified Bessel function of ith order
[15] and q�1 �

������������
�=�g

p
is the capillary length. This is the

length scale below which gravitational forces play no role
in determining the interface shape and its about a few
millimeters for typical solvents. Therefore, we can safely
replace K0�x� and K1�x� with their small argument expan-
sion and write for small gradients

 ��r� � �2zc�log�qr=2� � �e�; (4)

where �e is the Euler-Mascheroni constant. At the micron
scale gravitational energy will be negligible and the bottom
surface will have a symmetrical shape to the top one.
Therefore two opposite and equally strong capillary forces
will act on the top and bottom contact rings of an isolated
particle but they will cancel out, giving no net force. When
a second particle is introduced in the film at a distance s, it
will in turn contribute to the interface deformation produc-
ing a tilt of the contact lines around the first particle
[Fig. 1(b)]. Within the superposition approximation by
Nicolson [14], the amount of tilt would simply be given
by the gradient of the surface deformation produced by an
isolated particle at the location of the second one.
According to (4) the interface height around an isolated
particle is expected to decay logarithmically with the
distance producing a tilt of the contact lines that falls off

as the inverse interparticle distance. The capillary forces F
acting on the contact rings will not be balanced anymore
but a net attractive force would appear whose intensity is
given by the projections of F on the film reference plane

 f�s� � 2F�s�
@��r�
@r

��������r�s
� 16��z2

c�s�
1

s
: (5)

The resulting force is than proportional to the square of zc
and inversely proportional to the distance separating the
particles. In analogy with Coulomb electrostatic force in
2D, the quantity zc is usually called the ‘‘capillary charge’’
of the particle [16]. However, the capillary charge is not an
intrinsic constant property but a slowly varying function of
particle separation. This function can be calculated by
imposing the continuity and differentiability of the inter-
face across the contact ring.

 ��rc� � ��s� � h � a� zc; (6)

 rc � a sin c �
����������
2azc

p
; (7)

where we rely on the superposition approximation [14] to
express the interface vertical displacement, as the sum of
two single particle displacement fields (4). We are also
assuming in (6) that the deformation field ��s� produced by
one particle is constant over the contact line of the other.
Eqs. (6) and (7) can be solved analytically giving

 zc�s� �
a� h

�W��q4s2a�a� h�C�
; (8)

where W is the Lambert-W function [17] diverging loga-
rithmically for small negative argument, W���� � log��
log�log��, and C is the numerical factor exp�4�e � 1�=8 �
0:46 . . . . The above expression for zc is a slowly varying
function of s and it can be well approximated by its
logarithmic expansion about close contact s � 2a:

 zc�s� � z0�s=2a��; (9)

 z0 � zc�2a� �
a� h

�W��4q4a3�a� h�C�
; (10)

 � �
d logzc
d logs

��������s�2a
�

2

�W��4q4a3�a� h�C� � 1
: (11)

Accounting for the s dependence of zc the attractive
force (5) will still display a power law behavior but with
an exponent smaller than 1,

 f�s� �
16��z2

0

2a

�
2a
s

�
1�2�

; (12)

where � is an explicit function of the three characteristic
lengths: particle size, film thickness, capillary length of the
solvent. It is natural to choose h as the free parameter in the
theory being the only parameter in our experiment which is
difficult to control. The force switches on when the film

FIG. 1 (color online). Wetting geometry. The liquid film wraps
the particle inside a spherical cap of radius rc. For r > rc the
liquid-air interface is freestanding and slowly falls to the large
distance height h. The local height of the interface measured
from h is indicated by the function ��r�, whose gradients are
assumed to be small everywhere ( c 	 1).
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thickness is smaller than particle diameter (h < a) and its
intensity then grows roughly quadratically with a-h (5) and
(8). On the other hand, the exponent 1–2� is equal to 1 for
vanishing a-h but then quickly drops to a fairly constant
value as soon as a-h is large enough to produce significant
forces (�1 pN). This constant value depends practically
only on the particle size and varies very little with typical
solvent properties (q). Changing particle size from 10 nm
to 10 �m produces a corresponding exponent variation in
the range 0.92 to 0.82. For our particle size we predict an
exponent of 0.86.

A schematic view of the experimental setup is reported
in Fig. 2(a). Latex beads (5:7 �m diameter) are dispersed
in a 2=3 water–1=3 glycerol mixture with added 0.2% wt
surfactant (SDS). A thin film is obtained by sweeping the
solution on a square frame (6 mm side) of nylon wires
(60 �m thickness). Special care has to be devoted to
sample preparation and handling to avoid dust and other
particles which may distort the film interfaces. We used
very low concentrated samples and trapped particles in the
central part of the film, far away from menisci. Flow
currents at the beginning tend to move free floating parti-
cles towards the borders and the central part remains clear
when the currents disappear. Increasing the solvent viscos-
ity plays an important role in stabilizing the film by re-
ducing drainage but has no direct role in determining static
capillary interactions. The freestanding liquid film is en-
closed in a humidity chamber and placed over the 40x
objective of an inverted optical microscope (Nikon
TE2000-U). The same objective is used to focus the laser
beam (� � 532 nm) reflected off a spatial light modulator
(Holoeye LCR-2500) into two, dynamically reconfigura-
ble, optical traps [11,18]. Axial confinement is guaranteed
by the normal components of capillary forces. We can also
access the thickness variations around an isolated particle
by viewing the film under reflected monochromatic light.
To this end a red diode laser beam (� � 657), overlapped
to the trapping green beam, is focused by the same micro-

scope objective far from the film surface. The observed
portion of the red beam wave front is approximately plane
and the film reflectance than varies with cos�4���r�n=��
(n � 1:37). The distorted film will then show ring shaped
interference fringes centered on the trapped particle
[Fig. 3(b)]. Thickness variations can be extracted from
the fringe pattern and are reported in Fig. 3(a). A clean
logarithmic shape is found up to 200 �m, in perfect agree-
ment with (4).

To extract the force law one of the two traps is held fixed
while the other is continously scanned through different
distances with a step of 2 �m. Because of liquid drainage,
the film is slowly but constantly thinning. By recording the
intensity of the focused laser spot at the two film interfaces
while scanning the microscope focus we estimate a thin-
ning rate dh=dt below 5 �m=h. When the thickness is so
small that optical forces cannot balance the capillary in-
teraction, one of the two particles jumps out of the trap and
collapses onto the other. Until that time we can extract the
attractive capillary force from the interparticle distance.
Calling k1 and k2 the two trap elastic strengths, each
particle will be displaced towards the other by a distance
�xi � f=ki. The observed interparticle separation will be
then smaller than trap separation by an amount: �s �
��x1 � �x2� � f�1=k1 � 1=k2� � f=k0. Particle distance
will actually fluctuate due to Brownian motion with a mean
squared value given by [19]: h�d2i � kBT=k

0 which can be
used to experimentally determine k0. Particle positions can
be measured by image analysis with an accuracy better
than 10 nm [20]. On the other hand SLM allows very
precise and reproducible particles relative positioning
(beam pointing stability may only affect absolute posi-
tions). Brownian motion is then the most important source
of uncertainty in measuring the distance. We observe
h�d2i � 12 nm [21] and deduce a trap stiffness of k0 �
29 pN=�m. For each of the 25 relative distances in a scan,

FIG. 2 (color online). Schematic view of the experimental
setup described in text.

FIG. 3 (color online). Film thickness profile around an isolated
particle. (b) Monochromatic light reflected off the film displays
interference fringes centered around an isolated trapped particle.
A period in the fringe pattern corresponds to 240 nm thickness
variation. (a) Film height ��r� versus distance from particle
center r (open circles), red line is a logarithmic fit.
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we acquired 40 frames at 200 fps, resulting in a full scan
time of about 5 s. Equilibrium distances are averaged over
the last 10 frames, after the particles have settled in to the
new trap positions, and compared to the distances between
non interacting particles (h > a). From the time series of
frames we can also check that the force is constant in time
and that film thinning is negligible during a scan.

As already discussed, the logarithmic film shape in
Fig. 3 would lead, in the Nicolson approximation, to an
attractive force decaying roughly as the inverse of inter-
particle distance. More precisely we would expect to find
the power law in (12). Indeed a clean power law is found
experimentally as evidenced by the double log insert in
Fig. 4. The overall behavior is very well fitted by (12)
leaving the film thickness at large distance h as the only
free parameter. We find h � 2:2 �m � 0:8a that makes an
average gradient  c � 0:12, confirming the small gradient
assumption. For this fitted h value we get from (10) and
(11) a power law exponent 1–2� � 0:86 and z0 � 20 nm.
The full Kralchewsky prediction for the same parameter
values, also reported in Fig. 4(b), is almost completely
overlapped to our power law expansion, confirming the
goodness of our approximations. The force law was de-
rived for particles of identical size, however, inspection of
particle images reveals a size difference not exceeding
20 nm. Thought it is easy to generalize (6) and (7) for
spheres of different size, we could not obtain an explicit
analytical solution for that case. However, numerical solu-
tions show that (12) (with a the average radius) remains
valid within 1% when size differences are below 3% of
a-h, as in our case.

In conclusion, we have shown how optical micromani-
pulation provides an unprecedented tool for investigating
capillary forces governing the self-assembly of colloids in
liquid films. We provide a static measurement of the cap-
illary force law between an isolated colloidal pair and

perform a direct test of the theoretically predicted power
law. The exponent of the power law is found to be close to,
but smaller than 1, making capillary forces a quite unique
example of very long ranged interactions in the mesoscopic
world. The experiment opens the way to a variety of further
developments addressing the role of many body-effects,
membrane elasticity, wetting properties, surfactant dynam-
ics, hydrodynamic interactions in 2D. A deep insight into
the nature of interface-mediated forces at the mesoscopic
scale could suggest new routes to self-assembly of meso-
and nanostructures [22]. Optical trapping of colloidal par-
ticles bound to lipid membranes [23] could also provide
new insights in the dynamics of biomembrane inclusions
[24].
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FIG. 4 (color online). Capillary force law. (a) Open circles are
experimental determinations and black solid line represents a fit
to the predicted power law (12). Red dashed line is the full
Kralchewsky theory. (b) Same plot on a double-log scale. A 1=s
law is added for reference, as a black dashed line.
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