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We study heat transfer between conductors, mediated by the excitation of a monomodal harmonic
oscillator. Using a simple model, we show that the onset of rectification in the system is directly related to
the nonlinearity of the electron gas dispersion relation. When the metals have a strictly linear dispersion
relation, a Landauer-type expression for the thermal current holds, symmetric with respect to the tem-
perature difference. Rectification becomes prominent when deviations from linear dispersion exist, and
the fermionic model cannot be mapped into a harmonic bosonized representation. The effects described
here are relevant for understanding radiative heat transfer and vibrational energy flow in electrically
insulating molecular junctions.
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Developing nanoscale devices with asymmetric conduc-
tion properties is a long-standing challenge for fundamen-
tal science, for resolving the microscopic mechanisms
controlling transport, and for practical applications. In
the past years, rectification in mesoscopic and molecular
level systems have attracted much attention. Recent works
demonstrated electrical rectification in mesoscopic semi-
conductor structures [1], one-dimensional (1D) systems of
interacting electrons [2], and molecular level devices [3,4].
The growing interest in the thermal properties of nanoscale
structures [5] turned rectification of phononic current into a
topic of great interest, with implications on nanoscale
machinery [6] and thermal computation [7]. The different
setups demonstrating this effect [8–12] all rely on two
basic assumptions: The device should be asymmetric
with respect to the two terminals, and the system’s normal
modes should nonlinearly interact.

Radiative thermal conductance, where heat exchange
between metals is mediated by the generation of photons,
is a new topic of interest [13]. It was recently proved that at
low temperatures photonic heat conduction is quantized
[14], setting an upper bound on single-channel information
flow [15]. From the practical aspect, at the nanoscale,
radiative heat flow may compete with vibrational energy
transfer; thus, these two processes must be considered for
properly estimating the thermal conductance of molecular
level systems [13].

In this Letter we investigate monomode mediated energy
exchange between two metals and resolve the necessary
conditions for manifesting thermal rectification. We show
that when the metallic leads have a linear dispersion rela-
tion, or in other words, when the bosonization approach
can be employed to yield a harmonic Hamiltonian, a
Landauer-type expression for the energy current holds,
symmetric with respect to the temperature difference. In
contrast, for conductors with nonlinear dispersion relation,
when the approximations involving the standard bosoniza-
tion scheme break, the energy current can be rectified.
Deviations from the Tomonaga-Luttinger bosons picture

[16] thus eminently relate to the onset of rectification in the
system.

The fermionic model consists of two metallic leads held
at different temperatures, coupled by a single harmonic
mode. The Hamiltonian includes three contributionsHF �
H0 �He � VF,

 H0 � !0b
y
0b0; He �

X
�;k

�kc
y
�;kc�;k;

VF �
X
�;k;k0

��;k;�;k0c
y
�;kc�;k0f:

(1)

H0 includes a single harmonic mode (subsystem) of fre-
quency !0 and creation operator by0 . It can be considered
as a monomodal electromagnetic field, or, in a different
context, it represents a local vibrational mode of an inter-
mediate molecular unit. Henceforth we refer to it as a local
mode. This mode interacts with two fermionic reservoirs
(He), where cy�;k (c�;k) creates (annihilates) an electron at
the � � L, R metal with momentum k, disregarding the
spin degree of freedom. The oscillator metals interaction
term VF couples scattering processes within each metal to
the subsystem degrees of freedom, where f is a local mode
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FIG. 1. A schematic representation of our model. While elec-
tron flow is blocked, even for �L >�R, heat current is flowing
right to left (TR > TL) through an excitation of the local har-
monic mode. The curved arrows represent energy transfer pro-
cesses between the leads and the intermediate mode.
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operator. For simplicity, we use f � by0 � b0 and assume
that the coupling constants �� are energy independent and
real numbers. Since VF does not directly couple the reser-
voirs, the model (1) leaves out charge transfer processes,
assuming the tunneling barrier is high and the constriction
is long. However, energy can be transferred between the
two metals mediated by the excitation of the local mode.
For a schematic representation see Fig. 1.

While the aim of this Letter is fundamental, to under-
stand the microscopic origin of asymmetric transport in
simple fermionic Hamiltonians, the generic model studied
here may be realized in different systems. (i) Radiative
energy transfer, where the transfer of the lead’s excess
energy is mediated by the excitation of electromagnetic
modes. Other mechanisms for energy transfer are ne-
glected, e.g., thermionic emission, vibrational energy
flow, and photon tunneling. (ii) Vibrational energy flow,
where thermal energy is transferred between two metallic
terminals through a vibrating link. Here the basic assump-
tions are that the molecular link electrically insulates and
that vibrational energy cannot directly flow from the leads
to the molecule due to a large mismatch of the metal-
molecule phononic spectra.

For 1D noninteracting electrons with an unbounded
strictly linear dispersion relation, �k � �F � vF�jkj �
kF�, �F is the Fermi energy and vF is the velocity at the
Fermi energy, bosonization can be employed to yield an
equivalent bosonic Hamiltonian, HB � H0 �Hb � VB.
Here H0 is the same as above, while the fermionic degrees
of freedom are written in terms of Tomonaga-Luttinger
(TL) bosons [16], creation operator by�;q (� � L, R),

 Hb �
X
�;q

!qb
y
�;qb�;q; !q / q;

VB �
X
�;q

��;q�b
y
�;q � b�;q��b

y
0 � b0�:

(2)

The new coupling parameters ��;q relate to the couplings
�� [Eq. (1)] [17,18]. Assuming an Ohmic dissipation, the
spectral function of the � boson bath g��!� can be written
in terms of the fermionic parameters,
 

g��!� � 4�
X
q

�2
�;q��!�!q� � 2�!��;

�� �
1

2

�
2

�
atan��	���F����

�
2
;

(3)

with 	���F� the density of states at the Fermi energy. The
boson Hamiltonian HB is fully harmonic, and thus can be
written in terms of noninteracting collective modes. The
heat current in this model can be exactly calculated to yield
a Landauer-type expression [19],

 J �
2

�

Z
T �!��nLB�!� � n

R
B�!��!d!: (4)

Here n�B�!� � �e
!=T� � 1��1 is the Bose-Einstein occupa-

tion factor with temperature T�. The L to R transmission

coefficient is given by [19]

 T �!� �
!2�LB�RB

��!2 �!2
0�

2 � ��LB � �RB�
2!2�

;

with the relaxation rate ��B � 2�
P
q�

2
�;q��!�!q�. In the

weak coupling limit, ��B < !0, the transmission coefficient
is sharply peaked around !0, and Eq. (4) reduces into a
resonant energy transfer expression,

 J � !0
�LB�RB

�LB � �RB
�nLB�!0� � nRB�!0��: (5)

Here ��B is calculated at the (local oscillator) frequency!0.
For weak coupling, �	��F��< 1, Eq. (3) yields � �
2	��F�

2�2, and the relaxation rate is given by

 ��B � 2�!0�2
�	2

���F�: (6)

Equations (4)–(6) describe the heat current of the model
Hamiltonian (1) under the assumption that the two fermi-
onic reservoirs have a strictly linear dispersion relation. It
is clear that in this case thermal rectification cannot show
up, since exchanging the temperatures of the leads simply
reverses the sign of the heat current (4), not the absolute
value [20]. We show next that when the bosonization
method cannot be trivially employed, i.e., when the dis-
persion relation is not linear, the model (1) can bring in an
interesting rectifying behavior.

Assuming a general dispersion relation, the dynamics of
the model (1) is analyzed in the weak coupling system-bath
limit. Going into the Markovian limit, the probabilities Pn
to occupy the jni state of the local oscillator satisfy the
master equation

 

_P n �
X
m

Pmkm!n � Pn
X
m

kn!m; (7)

where the transition rate from the local oscillator state jmi
to jni is additive in the L andR reservoirs, kn!m � kLn!m �
kRn!m, due to the linear form of the interaction [Eq. (1)]
[10]. In steady state, the heat current across the system is
given by (calculated, e.g., at the L side)

 J �
X
m;n

Em;nPnkLn!m; (8)

with Em;n � Em � En. At the level of the golden rule
formula, the transition rates are given by
 

k�n!m � 2�jfm;nj
2
X
k;k0
j��;k;�;k0 j

2n�F��k��1� n
�
F��k0 ��

	 ���k � �k0 � Em;n�

� �2�jfm;nj2n�B�Em;n�

	
Z
d��n�F��� � n

�
F��� Em;n��F����: (9)

Focusing on the last equality, interestingly we see that the
thermal properties of the reservoirs are concealed within
both the Fermi-Dirac distribution function n�F��� �
�e������=T� � 1��1 and the Bose-Einstein occupation factor
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n�B��� � �e
�=T� � 1��1. It is therefore clear that when the

integral yields a temperature independent constant, the
statistic of the reservoirs is fully bosonic. The other ele-
ments in (9) are the matrix elements of the system operator
fm;n � hmjfjni and the dimensionless interaction term
F���� � j��j

2	����	���� Em;n�.
We assume next that the density of states slowly varies in

the energy window Em;n. The interaction function is then
expanded around the chemical potential [21],

 F���� 
 F����� � 
�
j�j ���

��
; (10)

with 
� a dimensionless number of order unity. Using this
form, the integration in Eq. (9) can be performed when
the Fermi energies are much bigger than the conduction
band edge, �� � Ec [21]. Making use of the following re-
lationships,

R
1
�1 d��n

�
F��� � n

�
F��� Em;n�� 
 �Em;n,R

1
�1 j�jd��n

�
F��� � n

�
F��� Em;n�� 
 �1:4Em;nT� (T� >

jEm;nj), we get

 k�n!m � 2�jfm;nj
2n�B�Em;n�Em;n

�
F����� � 1:4
�

T�
��

�
:

(11)

Note that nB��Em;n� � ��nB�Em;n� � 1�; thus, the excita-
tion and relaxation rates induced by the � reservoir satisfy
the detailed balance relation, k�n!m=k�m!n � e�Em;n=T� . We
consider next the limit of a constant density of states,
taking 
 � 0. Equation (11) then becomes

 k�n!n�1 � n��F�!0��1� n
�
B�!0��;

��F�!0� � 2�F�����!0;
(12)

where the bilinear interaction form was employed, f �
�by0 � b0�, leading to nearest neighbor transitions only. We
can also calculate the states’ population in steady state by
putting _Pn � 0 in Eq. (7) [10],

 Pn � xn�1� x�; x �

P
� ��F�!0�n�B�!0�P

� ��F�!0��1� n�B�!0��
:

(13)

Finally, the heat current for the 
 � 0 case is calculated
with the help of Eq. (8),

 J � !0
�LF�RF

�LF � �RF
�nLB�!0� � n

R
B�!0��: (14)

��F is calculated at the frequency !0. In the linear disper-
sion limit we thus recover the resonant energy behavior (5)
obtained with the equivalent boson Hamiltonian (2). Note
that the rates calculated with the different methods, ��F and
��B, are equal; see Eqs. (6) and (12).

We evaluate next the current when 
 � 0, i.e., for a
model with an energy dependent density of states. For the
linear coupling case, f � by0 � b0, Eq. (11) becomes
k�n!n�1 � n��F�!0��1� n�B�!0���1� ��

T�
��
�, where �� �

1:4
�
F�����

. The steady state population is therefore given by
Eq. (13) with ��F ! ��F�1� ��T�=���. Next we calculate
the energy current using Eq. (8). In the classical limit
(T� > !0) we obtain

 J �
�LF�RF�1� �L

TL
�L
��1� �R

TR
�R
�

�LF�1� �L
TL
�L
� � �RF�1� �R

TR
�R
�
�TL � TR�; (15)

where the dimensionless parameter �� effectively quanti-
fies the deviation from the linear dispersion case.

Comparing Eq. (15) to the high temperature limit of
Eq. (14) interestingly reflects the deviations from the TL
boson picture in transport properties. Equation (15) has
three important characteristics: First, the heat current ob-
tained is a nonlinear function of the temperature difference.
In fact, for �LF � �RF, J / a1�T � �a2�T2. The constants
a1;2 depend on subsystem and bath parameters, �T �
TL � TR. Second, this expression manifests nontrivial con-
trollability over the energy current by tuning the chemical
potentials. Third, this result demonstrates thermal rectifi-
cation, as the thermal current is different when switching
the temperature bias, assuming some asymmetry is in-
cluded, e.g., the chemical potentials, or the local mode-
bath interactions are different at the two terminals. When
the electronic properties of the reservoirs are equivalent,
� � ��, �a � ��, we find �J � J��T � J��T /

�� �T2

�a
��LF � �RF�, where J��T � J�TL � TR � ��T�.

The proportionality factor is given by G 
 �LF�RF=��
L
F �

�RF�
2 for �T�=�a < 1. Thus, a system made of a local

harmonic mode coupled asymmetrically to two metals
with energy dependent density of states rectifies heat.
Rectification becomes more effective with increasing �,
i.e., when the density of states strongly varies with energy.
In Fig. 2 we plot the absolute value of the ratio J��T=J��T ,
and find that it linearly departs from unity with increasing
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FIG. 2. Thermal rectification with increasing deviations from
constant density of states. � � 0 (full line); � � 0:1 (dashed
line); � � 0:5 (dash-dotted line); � � 1 (dotted line). �LF � 0:5,
�RF � 0:02, �a � �� � 1; temperature of the cold bath is
Tlow � 0:1.
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temperature difference and �, in agreement with the ana-
lytical expression (Ta �

TL�TR
2 ),

 jJ��T=J��T j 
 1�
�
�a

�T
�LF � �RF

��LF � �RF��1�
�Ta
�a
�
: (16)

Figure 3 demonstrates the dependence of the rectifying
behavior on the leads’ chemical potentials for a system
symmetrically coupled to the terminals using Eq. (15). We
find that at a small temperature difference rectification is
negligible, while for �T=�L > 0:1 asymmetry in the cur-
rent can be large up to 10%. Note, however, that tunneling
of electrons becomes a significant source of noise at large
voltage bias and/or temperature differences.

The thermal current can be calculated for other models
besides (10), expressing Eq. (9) as k�n!m �
�2�jfm;nj

2n�B�Em;n��
2
�g��T��, where g��T�� is defined

through this relation. Equation (16) then reduces to R �
jJ��T=J��T j 
 gR�TR�=gR�TL� for the linear coupling
model if �L � �R. We consider a superconducting R
lead (L can be a normal metal), as it effectively suppresses
normal electronic thermal conductance [5,14], and numeri-
cally evaluate gR�T� with the density of states 	R��� �
�j�j=

�����������������
�2 � �2
p

���j�j ���. Using � � 0:2 meV (alumi-
num), !0 � 0:4 meV, and T � 0:08–0:2 meV, we get
gR�T� 
 a1 � a2T where a2T � a1. The rectification ra-
tio then becomes R
 TR=TL, which can be as large as 2.5
for the above parameters, potentially measurable using the
setup of Ref. [22]. Similarly, a narrow band gap (0.1 eV)
semiconducting lead yields R
 10 for !0 � 0:1 eV at
the temperature range T 
 0:01–0:5 eV.

Previous studies on phononic heat transfer in 1D chains
demonstrated that anharmonic interactions are crucial for
manifesting thermal rectification [8–11]. Our result com-
plies with this observation: A fermionic reservoir with a
nonlinear dispersion relation can be represented by a bath

of bosons comprising nonlinear interactions [23]. The
fermionic Hamiltonian (1) can thus be mapped into a fully
bosonic model describing a harmonic link bilinearly con-
nected to anharmonic thermal baths.

In summary, we present here a simple model of single-
mode energy transfer between metals. The model can
describe energy flow through vibrating link and radiative
heat transfer. We resolve the microscopic requirements for
manifesting rectification: For noninteracting electrons, rec-
tification appears when the reservoirs’ density of states or,
analogously, system-bath couplings are energy dependent.
Since dissipative reservoirs typically contain anharmonic
interactions, finite rectification of the energy current be-
tween metals and dielectric surfaces is an inevitable effect.
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FIG. 3. Thermal rectification due to chemical potential differ-
ence. �T � 0:23 (full line); �T � 0:15 (dashed line); �T �
0:01 (dotted line). �LF � �RF � 0:1, �L � 1, �L � �R � 1.

PRL 100, 105901 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
14 MARCH 2008

105901-4


