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We derive a formula predicting dynamical tunneling rates from regular states to the chaotic sea in
systems with a mixed phase space. Our approach is based on the introduction of a fictitious integrable
system that resembles the regular dynamics within the island. For the standard map and other kicked
systems we find agreement with numerical results for all regular states in a regime where resonance-
assisted tunneling is not relevant.
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Tunneling of a quantum particle is one of the central
manifestations of quantum mechanics. For simple 1D sys-
tems tunneling under a potential barrier is well understood
and described, e.g., by using semiclassical WKB theory or
the instanton approach [1]. For higher-dimensional sys-
tems so-called ‘‘dynamical tunneling’’ [2] occurs between
regions that are separated by dynamically generated bar-
riers. Typically, such systems have a mixed phase space in
which regions of regular motion and irregular dynamics
coexist. Tunneling in these systems is barely understood as
it generically cannot be reduced to the instanton or WKB
approach. It has been studied theoretically [3–14] and
experimentally, e.g., in cold atom systems [16,17] and
semiconductor nanostructures [18]. A precise knowledge
of tunneling rates is of current interest for, e.g., eigenstates
affected by flooding of regular islands [19,20], emission
properties of optical microcavities [21], and spectral sta-
tistics in systems with a mixed phase space [22].

There are different approaches for the prediction of
tunneling rates depending on the ratio of Planck’s constant
h to the size A of the regular island. In the semiclassical
regime, h� A, small resonance chains inside the island
dominate the tunneling process (‘‘resonance-assisted tun-
neling’’) [11,12]. In contrast, we focus on the experimen-
tally relevant regime of large h (while still h < A), where
small resonance chains are expected to have no influence
on the tunneling rates. This regime has been investigated in
Ref. [14]; however, the prediction does not seem to be
generally applicable (see below). Other studies in this
regime investigate situations [13,23] where dynamical tun-
neling can be described by 1D tunneling under a barrier;
however, in our opinion they are nongeneric. A generally
applicable theoretical description of dynamical tunneling
rates in systems with a mixed phase space is still an open
question.

In this Letter we present a new approach to dynamical
tunneling from a regular island to the chaotic sea. The
central idea is the use of a fictitious integrable system
resembling the regular island. This leads to a tunneling
formula involving properties of this integrable system as
well as its difference to the mixed system under consid-
eration. It allows for the prediction of tunneling rates from

any quantized torus within the regular island. We find
excellent agreement with numerical data (see Fig. 1) for
an example system where tunneling is not affected by
phase-space structures like cantori at the border of the
island. The applicability to more general systems is dem-
onstrated for the standard map; see Fig. 4 below.

We consider 2D maps with one major regular island
embedded in the chaotic region (Fig. 1, insets), which are
described quantum mechanically by a unitary operator U
[24]. Classically the regular and chaotic region are sepa-
rated, however quantum mechanically they are coupled.
This coupling has consequences for the eigenstates of U.
While they are mainly regular or chaotic, i.e., concentrated
on a torus inside the regular region or spread out over the
chaotic sea, they do have at least a small component in the
other region. This is most clearly seen for hybrid states
[Fig. 2(d)]. For a wave packet started on the mth quantized
torus (m � 0; 1; . . . ; mmax � 1) coupled to an infinite cha-
otic sea, the decay e��mt is described by a tunneling rate
�m. For systems with a finite phase space this exponential
decay occurs at most up to the Heisenberg time �H �
h=�ch, where �ch is the mean level spacing of the chaotic
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FIG. 1 (color online). Dynamical tunneling rates from a regu-
lar island to the chaotic sea for the kicked system [27]:
Numerical results (dots) and prediction following from Eq. (3)
(lines) vs 1=@eff for quantum numbers m � 5. The insets show
Husimi representations of the regular states m � 0 and m � 5 at
1=heff � 50. The prediction of Ref. [14] for m � 0 with a fitted
prefactor is shown (dotted line).
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states. Introducing purely regular states j ~ regi and orthogo-
nal chaotic states j ~ chi, the tunneling rate from such a
purely regular state can be expressed by Fermi’s golden
rule � � �2�=@�jVj2�ch, where �ch � 1=�ch / Nch is the
chaotic density of states and V � h ~ chjĤj ~ regi for a time-
independent Ĥ. For a mapU one replaces the local average
over matrix elements in Fermi’s golden rule by an average
over all Nch chaotic states and expresses � with respect to
the time period of U, yielding

 � �
X
ch

jvj2; (1)

where v � h ~ chjUj ~ regi. The eigenstates of U cannot be
used for determining the small matrix elements v, as they
are neither purely regular nor purely chaotic.

In order to construct purely regular and chaotic states,
we introduce fictitious regular and chaotic quantum maps
Ureg and Uch [25]. Here Ureg is regular in the sense that it

can be written as e�iĤreg=@eff , where Hreg is a 1D
Hamiltonian, which is integrable by definition and @eff is
the effective Planck constant. Hreg has to be chosen such
that its dynamics over one time unit resembles the classical
motion corresponding to U within the regular island as
closely as possible [Fig. 2(b)]. The eigenstates j regi of
Ureg are localized in the regular region and continue to
decay into the chaotic sea [Fig. 2(e)]. This is the decisive
property of j regi, which is in contrast to those eigenstates
of U that are predominantly regular but all have a small
chaotic admixture. The eigenstates j chi of Uch live in the
chaotic region of U and decay into the regular island
[Fig. 2(f)].

As j regi and j chi are eigenstates of different operators
Ureg and Uch, they are not necessarily orthogonal,
h chj regi � � with 0 � j�j � 1. In order to apply
Fermi’s golden rule we introduce orthonormalized states

j ~ regi � j regi, j ~ chi � �j chi � ��j regi�=
������������������
1� j�j2

p
,

leading to h ~ chj ~ regi � 0. We find up to first order in �
for the coupling matrix element

 v � h chjU�Uregj regi; (2)

which can be inserted into Eq. (1). The appearing termP
chj chih chj is semiclassically equal to the projection

operator onto the chaotic region. It can be approximated
as 1� Preg, where Preg is a projector onto the regular
island. This yields

 �m � k�1� Preg��U�Ureg�j mregik
2 (3)

as our main result, which involves properties of the ficti-
tious regular system Ureg and the difference U�Ureg. It
allows for determining tunneling rates from the regular
state on the mth quantized torus to the chaotic sea.

The most difficult step in applying Eq. (3) is the deter-
mination of the fictitious integrable systemUreg, defined by
a time-independent 1D Hamiltonian Hreg�p; q�. On the one
hand, its dynamics over one time unit should resemble the
classical motion corresponding to U within the regular
island as closely as possible. As a result, the contour lines
of Hreg�p; q� in phase space [Fig. 2(b)] approximate the
KAM curves of the classical map [Fig. 2(a)]. On the other
hand, the function Hreg�p; q� should extrapolate suffi-
ciently smoothly to the remaining phase-space region.
This is essential for the quantum eigenstates of Hreg to
have reasonable tunneling tails in the neighborhood of the
regular island. Finding an optimalHreg is a difficult task. In
fact, it will resemble the dynamics within the island with
finite accuracy only, due to the generic presence of small
resonance chains and the complicated structure of tori at
the boundary of a regular island. Similar problems appear
for the analytic continuation of a regular torus into com-
plex space due to the existence of a so-called natural
boundary [4,8,10,11]. For the quantum tunneling problem
at not too small heff and thus for a finite phase-space
resolution, however, such an Hreg with limited accuracy
can be good enough. We will discuss below two ap-
proaches [26] leading to a sufficiently good Hreg for the
prediction of tunneling rates. Quantizing Hreg yields the

required quantum mechanical operator Ureg � e�iĤreg=@eff

with corresponding eigenfunctions j mregi. For the numeri-
cal evaluation of Eq. (3) in Fig. 1, it is convenient to re-
place Uregj 

m
regi by e�iEm=@eff j mregi and approximate

Preg �
P
j mregih mregj, where the sum extends over m �

0; 1; . . . ; bA=heff � 1=2c.
In the following we will discuss the application of

Eq. (3) for 1D kicked systems H�p; q; t� � T�p� 	
V�q�

P
n��t� n�, yielding the classical mapping: qt	1 �

qt 	 T0�pt�, pt	1 � pt � V0�qt	1�. The corresponding
quantum map over one kick period is U �
exp
�iV�q̂�=@eff� exp
�iT�p̂�=@eff� � UVUT , where @eff

is the ratio of Planck’s constant @ to the area of a phase-
space unit cell. We consider a compact phase space with

a

U

d

c

Uch

f

b

Ureg

e

FIG. 2 (color online). (a)–(c) The classical phase space corre-
sponding to some quantum maps U, Ureg, and Uch. (d)–
(f) Husimi representation of eigenstates of such maps.
Eigenstates of U have a regular and a chaotic component, as
illustrated in the strongest form of a hybrid state (d). Eigenstates
j regi (j chi) of Ureg (Uch) are purely regular (chaotic).
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periodic boundary conditions for q 2 
�1=2; 1=2� and
p 2 
�1=2; 1=2�. In order to avoid the influence of reso-
nances and cantori on the tunneling rates, we use a system
containing one regular island with very small resonance
chains and a narrow transition region to a homogeneous
chaotic sea. It is obtained by an appropriate choice of the
functions V 0�q� and T0�p� [27]. The phase space is shown
in the Husimi function insets of Fig. 1. After determining
Ureg and j mregi as described in the last paragraph, we pre-
dict tunneling rates by evaluating Eq. (3). Figure 1 shows a
comparison to tunneling rates, determined numerically by
absorbing boundary conditions at q � �1=2 and taking
twice the distance between the eigenvalue of the mth
regular state and the unit circle. We find excellent agree-
ment for the tunneling rates �m over 10 orders of magni-
tude. The deviations for the smallest � can be attributed to
the beginning of the resonance-assisted tunneling regime.
We determine Hreg using the Lie-transformation method
[28]. With increasing N, the tunneling rates following from
Eq. (3) converge to a constant value [see Fig. 3(a)] and we
choose N � 10 for the predictions in Fig. 1. Note that for
sufficiently high N [not shown in Fig. 3(a)] Hreg and the
prediction for � are expected to diverge.

We now demonstrate that an analytical evaluation of
Eq. (3) is possible for our example system. We define
functions ~V�q� and ~T�p� by a low order Taylor expansion
of V�q� and T�p�, respectively, around the center of the
regular island [29]. This results in a unitary operatorU ~VU ~T
with the following properties: (i) The corresponding clas-
sical dynamics is not necessarily regular. (ii) It is close,
however, to a regular quantum map Ureg beyond the border
of the island and can therefore be used in Eq. (3) instead of
Ureg. (iii) Within the island it has an almost identical
classical dynamics as U. Therefore �U�U ~VU ~T�j regi

has almost all of its weight in the chaotic region and the
projection operator 1� Preg can be neglected in Eq. (3).
With the definitions 1	 "V 
 e��i=@eff �
V�q̂�� ~V�q̂�� and 1	

"T 
 e��i=@eff �
T�p̂�� ~T�p̂�� one obtains �m � kU ~V
"V 	
"T 	 "V"T�U ~T j 

m
regik

2. We find that typically the third
contribution is negligible, leading to

 �m � 2
Z
dqj mreg�q�j2

�
1� cos

V�q� � ~V�q�
@eff

�

	 2
Z
dpj mreg�p�j

2

�
1� cos

T�p� � ~T�p�
@eff

�
: (4)

In the last step the sums over the discrete position and
momentum values have been replaced by integrals, which
is valid in the semiclassical limit. Agreement with the
direct evaluation of Eq. (3) is found (not shown). If an
analytical WKB expression for the regular states j mregi is
known, Eq. (4) can be evaluated further. This is the case for
a different parameter set [30], which yields a tilted har-
monic oscillator-like island embedded in a chaotic sea. We
approximate V�q� � ~V�q� and T�p� � ~T�p� by linear func-
tions and use a WKB ansatz for the regular wave function.

It turns out that the integral is proportional to the square of
the modulus of the regular wave function at the border of
the regular island. We obtain

 �m � c
heff

�m
exp

�
�

2A
heff

�
�m � �m ln

�
1	 �m�������
�m
p

���
(5)

as the semiclassical prediction for the tunneling rate of the
mth regular state, where �m � �m	 1=2��A=heff�

�1,
�m �

����������������
1� �m
p

, A � 0:28 is the area of the regular island
and c � 1 is heff independent by a rough semiclassical
estimate. The prediction, Eq. (5), gives excellent agree-
ment with numerically determined data over 10 orders of
magnitude in � (not shown). Let us make the following
remarks concerning Eq. (5): (i) The only information about
this nongeneric island with constant rotation number is
A=heff as in Ref. [14]. (ii) While the term in square brackets
semiclassically approaches 1, it is relevant for large heff .
(iii) In contrast to Eq. (4), where the chaotic properties are
contained in the differences V�q� � ~V�q� and T�p� �
~T�p�, they appear in the prefactor c via the linear approxi-
mation of these differences.

The paradigmatic model of quantum chaos is the stan-
dard map [T�p� � p2=2, V�q� � �K=�4�2� cos�2�q�],
which for K � 2:9 has a large generic regular island.
Absorbing boundary conditions at q � �1=2 lead to
strong fluctuations of the numerically determined tunnel-
ing rates as a function of heff , presumably due to cantori.
When choosing q � �1=4, which is closer to the island,
we find smoothly decaying tunneling rates (dots in Fig. 4).
Evaluating Eq. (3) gives good agreement with these nu-
merical data. Note that this is the first quantitative predic-
tion of regular-to-chaotic tunneling rates for the standard
map. Here we determine Hreg by first using the frequency
map analysis [31] for characterizing the properties of the
regular island. This information is used to find the optimal
2D Fourier series of order N for Hreg. The tunneling rates
following from Eq. (3) show for increasing N the expected
divergence [see Fig. 3(b)]. For the predictions in Fig. 4 we
choose N � 4 as the largest order before this divergence.

We now want to discuss the relation of our approach to
previous studies. The semiclassical formula presented in
Ref. [14] (dotted lines in Figs. 1 and 4) deviates from
numerically determined tunneling rates. It works best for
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FIG. 3. Predicted tunneling rate, Eq. (3), normalized by the
numerical value for m � 0, heff � 1=32 vs order N of Hreg

corresponding to (a) Fig. 1 (N � 10) and (b) Fig. 4 (N � 4).
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the case of constant rotation number, which according to
Ref. [15] is the approximation used in Ref. [14]. However,
it seems to be not generally applicable. The system studied
in Ref. [13] can be approximated by a 1D Hamiltonian
Hreg�p; q� with a cubic potential. Here the tunneling path
ends far away from the island. In such a case our result is
also applicable but the use of the WKB expression pre-
sented in Ref. [13] is more convenient. In general situ-
ations, however, the main contribution comes from
tunneling to the neighborhood of the regular island as
seen, e.g., from Eq. (4). We also performed successful tests
on the tunneling system investigated in Ref. [32].

In summary, we have derived a quantum mechanical
formula Eq. (3) for the tunneling rates, which involves
the fictitious integrable systemUreg and the differenceU�
Ureg. It is the basis for deriving semiclassical expressions,
which we demonstrated with Eqs. (4) and (5) for the case of
a fictitious regular system, that is well approximated by a
kicked system. Still there are open questions about dy-
namical tunneling from a regular island to the chaotic sea:
(i) Which properties of the regular island (e.g., size, wind-
ing number, shape) and which properties of the chaotic sea
are relevant in general? (ii) Can the approach be combined
with the resonance-assisted tunneling description and how
can cantori be accounted for? (iii) How can it be general-
ized to time-independent Hamiltonian systems, in particu-
lar, billiards? We hope that our approach with a fictitious
integrable system will allow us to answer these questions.
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[31] J. Laskar, C. Froeschlé, and A. Celletti, Physica
(Amsterdam) 56D, 253 (1992).

[32] A. Ishikawa, A. Tanaka, and A. Shudo, J. Phys. A 40, F397
(2007).

FIG. 4 (color online). Tunneling rates for the standard map
(K � 2:9) for m � 2. Prediction of Eq. (3) (lines) and numerical
results (dots), obtained using an absorbing boundary at q �
�1=4 (gray-shaded area of the inset). Prediction of Ref. [14]
for m � 0 with a fitted prefactor (dotted line).
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