PRL 100, 103201 (2008)

PHYSICAL REVIEW LETTERS

week ending
14 MARCH 2008

Dynamical Effects in the Interaction of Ion Beams with Solids
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Calculations of the stopping power (SP) of ion beams in solids have been based on a homogeneous
electron gas scattering off a static atom and entail at least one free parameter. Here we report dynamical
simulations of ions channeled in silicon. Time-dependent density-functional theory (TDDFT) is used. The
calculated SPs are in excellent agreement with the observed oscillatory dependence on atomic number.
TDDFT calculations for a homogeneous electron gas demonstrate that both dynamical response and
nonuniformities in the electron density are essential to reproduce the data without free parameters.
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The dynamics of energetic ion beams traversing solids
and the resulting ion-to-solid energy transfer are widely
studied. Stopping power (SP) [1] is a key measurable
quantity that characterizes this energy transfer and has
served as a critical test of theories for the underlying
mechanisms. Early theoretical work on SP was motivated
by the stopping of elementary particles in solids [2,3].
Since the 1960s ion beams have been used and studied
extensively in the context of materials processing. The
dynamics of well-channeled ion beams in semiconductors
[4—7] have become an important test for theoretical models
of SP (see [8], and references therein). Well-channeled ions
represent a limiting case for ion-solid interactions in which
projectile ions essentially lose energy only to the crystal
valence electrons. Even so, SP exhibits an oscillatory
behavior as a function of projectile atomic number Z. At
high projectile ion velocities, where available theories best
predict observed behavior, these so-called Z; oscillations
damp out.

Theories of SP in the low-velocity regime have been
based on the assumption that the electrons in the solid can
be approximated by a homogeneous electron gas (HEG).
Several authors have calculated SP’s, using linear-response
theory [9—-13]. Other authors have used scattering theory in
the projectile ion’s reference frame: the electrons in the
target material are scattered by the potential of the static
ion [1,14,15]. The SP is then determined from the phase
shifts of this potential. The electron density of the HEG
employed has been obtained from model calculations [16]
or fits to measured data [15]. The results of such theories
reproduce the observed oscillations at least qualitatively. In
the one-parameter theory of Echenique et al. [15] for (110)
Si channels and ions with Z; = 5-19, the calculated SPs
are in good agreement with the data except for the large-Z
ions (Z, = 15-19).

Despite the apparent success of these theories, serious
questions remain open about their key assumptions. The
electron density in semiconductor channels is not uniform.
In the Si (110) channel, it varies by more than an order of
magnitude in the region traversed by the ion. Penalba et al.
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[17] extended the approach described above to include
inhomogeneities in the target by averaging over the den-
sities in the channel, which led to better agreement with
experiment over the entire range of Z;. In addition, since
the ion’s velocity is comparable to those of the crystal’s
valence electrons, calculating the scattering potential by
keeping the ion’s electrons in their ground-state configu-
ration is a highly limiting approximation. In this Letter we
report results of fully dynamical, parameter-free calcula-
tions of the SP for 15 projectile ions traversing the (110)
and (111) channels in a Si crystal. The calculations were
performed using time-dependent density-functional theory
(TDDFT) [18]. The calculated SPs are in excellent quanti-
tative agreement with the observed Z; oscillations.
Transitory bonds are observed between the projectile and
crystal atoms, but have no net effect on the SP. We find that
both the dynamical response and the inhomogeneities in
the solid’s electron distribution play major roles in deter-
mining SP. We probed these roles by performing TDDFT
calculations for the same 15 projectile ions traversing a
HEG. We show that when the electron density is treated as
uniform, the agreement between theory and experiment is
substantially worse for SPs calculated using a fully dy-
namical model than those obtained from previous static
calculations.

In the present calculations, the initial system, consisting
of a perfect silicon crystal and physically separated free
atom, are described with density-functional theory (DFT),
the local density approximation (LDA) for exchange cor-
relation, pseudopotentials, and plane waves. At time t = ¢,
the free atom is given an initial velocity and aimed down
the center of a (110) or (111) channel in a Si film. As the
system evolves in time, the electronic wave functions
propagate by applying the time-evolution operator

Y1) = Ulty, Dp(ty), (1)

where
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Here we have defined ¢, = t; + nA. In the limit as the
time step becomes vanishingly small, A — 0, the time-
evolution operator Eq. (2) becomes

lim Ult,, t, + A) = e /WA, @)

Thus, applying the time-evolution operator numerically
requires that A be small enough that the Hamiltonian does
not change appreciably during a single time step. The
Chebychev expansion [20] is used to expand the exponen-
tial operator in Eq. (4).

The total energy of the electron-ion system can be
written as the sum of the kinetic energy of the nuclei and
the instantaneous energy [21]

Etot = Enuc + Einstant’ (5)

where Ejpqane 1 defined as the Kohn-Sham total energy
calculated from the (fully time-dependent and time-
evolved) wave functions and nuclear positions at each
time step. E,; is conserved in the absence of external
interactions such as photoemission or photoabsorption
[21], which are not permitted in the present method.
Therefore the conservation of E,, is a test of numerical
stability in the present method. The forces on the ions are
calculated using the Hellmann-Feynman theorem and the
ions are time stepped via Newton’s second law.

Our implementation of TDDFT was built on the
SOCORRO code [22]. In order to assess the new code and
test Eq. (5), we simulated a binary scattering event between
two Si atoms in vacuum. A ‘“‘target” atom initially at rest
was placed at the center of the calculation cell. A projectile
Si atom with a velocity of 2.11 A/fs (6.52 keV) was set on
a trajectory past the target atom with an impact parameter
of 1.0 A. The atom velocities evolve during the simulation.
The quantities E, . and Ej,,, Were monitored as a func-
tion of simulation time (equivalently, as a function of the
position of the projectile atom) for both a TDDFT calcu-
lation and Born-Oppenheimer molecular dynamics
(BOMD), also known as Car-Parrinello dynamics. In
BOMD the electrons are always in their instantaneous
ground state as the nuclei are time stepped. A comparison
of the results is presented in Fig. 1. In the TDDFT calcu-

collision of two atoms. AE =~ 12.1 eV is the transfer of energy
from the kinetic energy of the nuclei to the electrons in the
TDDFT simulation. In the BOMD calculation, there is no net
transfer of energy.

lation, 12.1 eV is transferred to the electron system as the
projectile atom scatters from the target atom. In the BOMD
calculation, no net energy is retained by the electrons after
the scattering event, because the instantaneous energy of
the electrons is, by definition, the ground-state energy of
the system, and is therefore a function only of the inter-
atomic distance. The transfer of energy captured in the
TDDFT calculation demonstrates that this TDDFT formu-
lation is suitable for SP calculations. The figure also dem-
onstrates that AE,,.(f) = — AE; qn:(?), verifying that the
total energy of the system defined by Eq. (5) remains
constant throughout.

‘We now turn to calculations of SP for ions traversing a Si
(110) channel. Figure 2 shows the 21 X 11 X 11 A3 cal-
culation cell, containing a bulk terminated, 72 atom, crys-
talline silicon film. The projectile atom is initially placed in
the vacuum region outside the crystal. The ion core that
carries the mass of the projectile atom is given an initial
velocity » = 15 A/fs perpendicular to the crystal surfaces
as in the experiment of Eisen [6]. The valence electrons in
the entire system start in their ground state and evolve
during the simulation. The time step was ~1073 fs, de-
pending on the species of the projectile atom, which tra-
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FIG. 2 (color online). Simulation cell for SP calculations. The
projectile atom, with initial velocity v, travels through a (110)
channel of the crystalline silicon film.
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verses the calculation cell in ~1.3 fs. Figure 3 shows the
ion kinetic energy, E,,,.(x), as a function of the position of a
Mg projectile moving through the calculation cell depicted
in Fig. 2. Plots for all considered projectile atoms are
qualitatively similar. Once the ion enters the crystal (at
~5 A in Fig. 3), kinetic energy is lost to the crystal
electrons and the SP can be calculated from the overall
slope of either E,.(x) or Ejpgan:(x).

Oscillating energy transfer between the projectile ion
core and valence electrons is observed immediately after
the projectile begins moving. The ion core first loses
energy to the electrons; the electrons catch up, overshoot,
and transfer energy back to the ion core, and so on. To test
for any effect of this on SP, we carried out calculations
placing the crystalline film at different points of the pro-
jectile’s in-vacuum trajectory. In Fig. 3, the solid black
curve and dashed red curve correspond to projectiles start-
ing 15.9 A and 8 A from the film, respectively. The SP for
both curves is the same once the projectile is inside the
crystal. We also prepared the projectile in various posi-
tively charged states and verified that the energy transfer in
the crystal (the SP) is independent of initial charge.

The curve shown in the inset in Fig. 3 is the deviation of
Epuc(x) from the straight line fit to E,,(x) shown as a
dashed line. The six vertical dotted lines in Fig. 3 and the
inset indicate the points at which the projectile passes
through a perpendicular [110] plane of atoms and has its
closest approach with the lattice atoms. The minima of the
oscillations in E,,.(x) shown in the inset of Fig. 3 represent
transitory bonds formed between the projectile and lattice
atoms in the channel perimeter. Bonds with the nearest
neighbors in each passing crystal plane form, then break,
and then new bonds form with nearest neighbors in the next
crystal plane, as demonstrated in Fig. 4. All projectile
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FIG. 3 (color online). The kinetic energy (KE) of a Mg ion
channeling through a thin film of silicon. The dashed line is a fit
to the portion of the KE of the ion while in the film. The SP is the
slope of the fit. The inset is the difference between the KE and
the fit. The red dashed curve corresponds to a projectile starting
8 A from the surface of the thin film.

atoms showed qualitatively similar behavior. It is clear
from Fig. 3 that the formation of transitory bonds is only
a small contribution to the overall SP.

The SP calculation described above was repeated for ion
species ranging from B (Z; =5) to K (Z, = 19). The
calculated SP values are given by the dark blue curve
with solid diamonds in Fig. 5. The experimental values
reported by Eisen [6] are shown by the solid black points.
The overall agreement between theory and data is excel-
lent. Figure 5(a) also shows the theoretical results of
Echenique et al. [15] (gray curve and points). The method
of that paper approximates the crystal with a HEG and
keeps the ion in its ground state while crystal electrons
scatter from it. In addition, the method entails a free
parameter (the constant electron density of the HEG) that
was fitted to the experimental SP value of B. As can be seen
from Fig. 5(a), the SP values calculated by this method are
quite good for projectile species up to Al, but are too small
for the heavier projectile species starting with Si (Z; =
15-19).

In order to explore the roles of dynamical effects and the
nonuniformities in the electron density in the (110) crystal
channel, a second set of TDDFT calculations was per-
formed for projectiles moving through a HEG. We set the
density of the HEG to r, = 2.38, which was the value
adopted by Echenique et al. [15] for their calculations at
which the TDDFT HEG calculated SP was equal to the
experimentally observed SP for B. The results are shown as
a dashed blue curve with open diamonds in Fig. 5(a),
demonstrating that inclusion of dynamical effects produces
substantial changes to the values obtained by Echenique
et al. and, in fact, makes the overall agreement with the
data worse. We also pursued TDDFT/HEG calculations at
a different density (2.23), determined to yield the experi-
mental SP value for B. The results are shown in Fig. 5(a).
The net conclusion is that dynamical effects are not neg-
ligible and that the HEG approximation fails to yield
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FIG. 4 (color online). Valence electron density in (110) planes
perpendicular to the ion motion as the projectile moves through a
(110) channel. The densities in these different planes are shown
in (a), (b), and (c). (d) The line plots of the density along the
vertical lines in panels (a), (b), and (c). Gray arrows point to the
projectile.
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FIG. 5 (color online). SP as a function of the atomic number of
the projectile atomic number Z; for projectiles moving through
the (a) (110) and (b) (111) channels. Results are shown for
experiment [6], the present TDDFT calculations ,and the results

of Echenique et al. [15] (SP, as defined in the literature [23], has
units of force).

quantitative agreement with the experimental data for all
the elements.

The TDDFT/HEG results together with the full TDDFT
results in a Si crystalline film demonstrate that both dy-
namical effects and the inhomogeneities in the electron
density in the Si crystal are essential to obtain quantitative
agreement with the experimental data. In Fig. 5(b) we
show TDDFT SP values for ions in the {111) channel of
Si. Once more, there is a marked improvement in the
agreement with the data. The dynamical effects and the
density inhomogeneities are still substantial, but their com-
bined effect is somewhat smaller than it is in the (110)
channels.

As a final general note, we find that the TDDFT method
described above accurately characterizes the interaction of
ions and electrons without restricting the electrons to the

adiabatic (BO) surface. The method is, therefore, a power-
ful tool for modeling systems where the nonadiabatic
behavior of the electrons is crucial to the phenomenon of
interest. Moreover, this approach allows one to include
important dynamical effects directly in a parameter-free
way.
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