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We propose and experimentally demonstrate the method of population transfer by piecewise adiabatic
passage between two quantum states. Coherent excitation of a two-level system with a train of ultrashort
laser pulses is shown to reproduce the effect of an adiabatic passage, conventionally achieved with a single
frequency-chirped pulse. By properly adjusting the amplitudes and phases of the pulses in the excitation
pulse train, we achieve complete and robust population transfer to the target state. The piecewise nature of
the process suggests a possibility for the selective population transfer in complex quantum systems.
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The existence of robust and selective methods of execut-
ing population transfer between quantum states is essential
for a variety of fields, such as precision spectroscopy and
atomic clocks [1], quantum computing [2], control of
molecular dynamics, and chemical reactions [3].
Traditionally, population transfer between two quantum
states has been achieved by either executing a half-cycle
Rabi oscillation, i.e., by applying a ‘‘� pulse,’’ or by
optically inducing an adiabatic passage (AP) between the
states of interest [4]. Though the application of a � pulse
can be implemented on a very short time scale, it is far
from being robust, as it is highly sensitive to fluctuations in
the laser power, phase, and pulse duration. In contrast, AP,
which, for example, can be executed by the stimulated
rapid adiabatic passage technique [5] or by slowly chirping
the instantaneous frequency of the pulse, exhibits high
degree of robustness against the fluctuations of many of
the laser field parameters [4,5]. Because of this property,
AP with chirped pulses has been widely employed for
controlling atomic [6,7] and molecular [8,9] systems.

Though well suited for two-level systems, population
transfer with chirped pulses in multilevel systems becomes
sensitive to the exact value of the chirp and field strength
[10,11], thus losing some of its appeal as a robust way of
efficiently manipulating populations. When used with
spectrally broad strong ultrashort pulses, frequency chirp-
ing can no longer selectively populate a prechosen super-
position of states [9,11], and other methods of adiabatic
[12] or nonadiabatic strong-field excitation must be em-
ployed. In the latter case, the problem can be treated in a
purely empirical way by designing feedback-controlled
experiments with genetic search algorithms [13,14].
Notably, the solution of Ref. [14] as well as the alternative
approaches of strong-field population transfer [15,16] in-
volve an accumulative action of sequences of laser pulses
[17]. Yet the robustness and efficiency of the AP method
has not been fully achieved.

Recently, we have demonstrated theoretically that one
can implement AP with ultrashort pulses by executing the
transfer of population in a piecewise manner [18,19]. The
original work on piecewise adiabatic passage (PAP) [18]
proposed using two temporally overlapping pulse trains. It
was shown that one can bring about a complete population
transfer between two quantum states through a third inter-
mediate level. In this Letter we present the first experimen-
tal demonstration of the PAP method with a single pulse
train by introducing the technique of ‘‘piecewise chirp-
ing.’’ We show that the piecewise population transfer re-
produces an AP process executed with a continuous
frequency-chirped pulse, achieving comparable levels of
robustness and efficiency.

Consider a system of two states, j1i and j2i, of energies
E1 and E2, driven by a near-resonant field with a frequency
detuning � relative to the transition frequency!0 � �E2 �
E1�=@. An arbitrary coherent superposition of these states
can be written in the ‘‘laser’’ reference frame in terms of
two angles, � and �, as
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This state can be represented as a unit Bloch vector point-
ing along the (�, �) direction. The rotating wave approxi-
mation results in two eigenstates,  � and  �, which
constitute two stationary points on the Bloch sphere, (��,
��). Here, tan�� � ��=� and �� � ��=2, � being
the Rabi frequency. All other solutions of the time-
dependent Schrödinger equation precess around the axes
defined by the above stationary points, displaying periodic
trajectories of the familiar Rabi oscillations [4].

In conventional AP with chirped pulses, � and � are
slowly varied in time. If initially ���j�j, and at the end
of the process �� j�j, there is an interchange of pop-
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ulations between state j1i and state j2i. This is reflected on
the Bloch sphere as a movement of the stable points from
the � � 0 direction to the � � � direction and vice versa.
The above behavior holds as long as the adiabaticity con-
dition is maintained:

 j _��t�j �
�����������������������������
�2�t� ��2�t�

q
: (1)

In the ‘‘transition’’ frame, which rotates around the z axis
with the angular velocity ��t� relative to the laser frame,
the Bloch vector during AP proceeds via a spiral trajectory,
as shown in Fig. 1(a) (see also Ref. [20]).

We now consider the evolution of the Bloch vector in the
transition frame under the action of a train of short, mu-
tually coherent, laser pulses. Each pulse, centered at the
transition frequency !0 and of duration �, generates a
rotation P̂ 	 R��P� of the Bloch vector by an angle �P �R
� ��t�dt around an axis lying in the (x, y) plane. If the

relative phase of the carrier oscillations of two pulses is
zero, the corresponding rotation axes coincide. To account
for the change in the carrier phase between consecutive
pulses, instead of changing the rotation axis each time, we
fix it along y but introduce an additional z rotation of the
Bloch vector between the pulses, F̂ 	 Rz��F�. The overall
evolution may be represented by a sequence of rotations
Û � . . . F̂ P̂ F̂ P̂ . . . The product F̂ P̂ of two rotations is an
overall rotation by an angle �0 about an axis defined by the
(�0, �0) angles, given to lowest-order expansion in �P, �F
as

 �0 �
����������������������������
��2

P � �
2
F�=2

q
; (2)

 �0 � ��=2� �F=2; (3)

 tan�0 � ��P=�F: (4)

By maintaining the same value of �F and �P throughout
the pulse train we induce piecewise rotations of the Bloch
vector around the closest stable point (�0, �0). By slowly
varying the values of �P, �F we can make the stable points

move and the Bloch vector, captured near one of them,
follow. Intuitively, the conditions of such piecewise follow-
ing are: (i) the y and z rotations should be small (i.e., each
pump pulse should induce an angular change much smaller
than � and each increment in the carrier phase should be
small too), and (ii) (�0, �0) should not move much from
pulse to pulse, i.e.,

 ��0 �
����������������������������
��2

P � �
2
F�=2

q
: (5)

If initially �P � j�Fj, the two stationary points, �0 � 0
and �0 � �, correspond to the bare states j1i and j2i. As
�P increases and j�Fj decreases, the states originating in
j1i and j2i move towards the equator of the Bloch sphere.
They cross the equator as soon as �F changes sign and
finally interchange with each other. Depicted in the original
transition frame, the trajectory of the Bloch vector is a
piecewise spiral, as shown in Fig. 1(b).

The above analysis shows that the adiabatic following,
similar to that implemented with the continuous chirped
pulse, can be executed by a sequence of pulses with slowly
varying amplitudes, and with the absolute carrier phase
changing from pulse to pulse in a nonlinear way (i.e.,
decreasing �F in the first half of the process and increasing
�F in the second). An example of such AP, corresponding
to the piecewise population transfer in atomic Rb, is shown
in Fig. 2. Here, the field is given by a sequence of 20
femtosecond pulses. For the kth pulse (k 2 
0; 20�)

 Ek�t� � Ak cos
!0t��k�sin2

�
�
t� tk
�

�
; (6)

where tk marks the beginning of the kth pulse, with � �
300 fs being its full duration. The Ak amplitude represents
the train envelope parametrized as a Gaussian of 3 ps width
(FWHM), and !0 is the transition frequency between the
states j1i � 5s1=2 and j2i � 5p1=2 of Rb. The ‘‘piecewise
chirp’’ of the pulse train is determined by the extra phase
factor �k � ���k� k0�

2=2, where k0 � 11 and �� � 0:2.
As the pulse sequence proceeds, the pulse-to-pulse phase
change, �F � ���k� k0� � ��=2, smoothly evolves from
large negative values to large positive values. Our simula-
tions show that as long as the conditions of piecewise
adiabaticity (5) are maintained, the population transfer is

FIG. 1 (color online). Two calculated sample trajectories of the
Bloch vector (thick gray arrow) during the AP process imple-
mented in atomic Rb with a single continuous chirped pulse (a),
and a train of 20 ultrashort pulses (b) (see text).
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FIG. 2 (color online). (a) The amplitudes (oscillatory line,
blue) and phases (piecewise parabola, red) of the driving field.
(b) The populations of states j1i (falling, blue) and j2i (rising,
green) during the PAP process.
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robust with respect to the pulse shapes, their intensities,
and the exact value of the piecewise chirp ��.

The population transfer by piecewise chirping described
here is a particular example of the piecewise adiabatic
passage concept introduced in Ref. [18]. In the limit of
infinitesimal rotations, the present process becomes
equivalent to the usual continuous frequency chirping,
associated with the quadratic phase change of the carrier
phase in time. In this limit, the coarse-grained adiabaticity
condition (5) reduces, up to a numerical factor, to the
familiar quantum adiabaticity condition (1).

In the proof-of-principle experiment, we studied one-
photon excitation of atomic rubidium (85Rb) from the
ground to the excited electronic state, 5s1=2 to 5p1=2,
respectively. The effect of a single frequency-chirped laser
pulse was compared with the effect of a short pulse train
described above. The pulses were produced by a
Ti:sapphire regenerative amplifier and had a spectral width
of 7.1 nm (FWHM). We tuned the central wavelength of
the laser to 795 nm, resonant with the 5s1=2 ! 5p1=2

transition. To generate a continuous or a piecewise chirp,
the original pulse was spectrally shaped using a homemade
pulse shaper based on a double-mask liquid crystal spatial
light modulator in the 4f configuration [21]. The excitation
beam was focused with a long focal length lens (f �
100 cm) onto a cloud of rubidium atoms continuously
evaporated from the rubidium dispenser in a vacuum cham-
ber equipped with the time-of-flight ion detector.

To determine the population of the excited state, we
ionized the atoms by a second probe pulse tuned to
1300 nm and arriving in the chamber 2.5 ps after the
excitation pulse [Fig. 3(a)]. The ion signal provides good

selectivity between the ground and excited state Rb atoms
because the ionization of 5s1=2 requires two more probe
photons than that of 5p1=2. The power of the probe pulse
was lowered to less than 0:1 �J so as to produce no
detectable ions from the atoms in the ground state. To
ensure ion sampling from the region of uniform excitation
field strength, we confined the interaction region in the
longitudinal direction by a 3 mm aperture placed between
the rubidium dispenser and the laser beam. We suppressed
the transverse spatial averaging by focusing the probe
beam to a smaller spot size than the size of the 795 nm
beam (1=e2 beam diameters of 180 and 470 �m, respec-
tively). The effect of the laser power fluctuations was
eliminated by recording the energy of each excitation pulse
together with the corresponding ion count.

The resolution of our spectral pulse shaper of 0.17 nm
per pixel allowed us to split the original pulse into a
sequence of up to 9 well-separated pulses. Continuous
chirping was applied by means of the quadratic phase-
only modulation, ��!� � ��!�!0�

2, where � is the
linear chirp and !0 is the center frequency of the pulse.
Generation of a pulse train requires both the amplitude and
phase modulation of the field spectrum. A sequence of N
replicas of the original transform-limited pulse with the
real amplitudes Ak and phases !0t��k separated by the
time interval � were obtained with the following complex
spectral mask:

 S�!n� �
X
k

Ake�i�k!n���k�=jSj; (7)

where the frequency !n corresponds to the nth pixel of the
pulse shaper, and the normalization factor jSj was used to
satisfy jS�!n�j

2 � 18 n. Examples of the applied spectral
shaping and the corresponding pulse train, characterized
by the method of frequency resolved optical gating
(FROG), are shown in Figs. 3(b) and 3(c).

In Fig. 4 we show the measured ion count corresponding
to the population of the 5p1=2 state of rubidium for various
parameters of the excitation field. The oscillatory (blue)
curve in plot (a) represents the well-known Rabi oscilla-
tions as a function of the energy of a single transform-
limited pulse. This and all other experimental data points
were normalized to the first maximum of this curve at
around 0:1 �J. Similar oscillatory dependence in plot
(b) corresponds to the train of 7 pulses with Gaussian
envelope of amplitudes and zero piecewise chirp, namely
Ak � exp��k2 ln2=4� and �k � 0, where �3 � k � 3.
The temporal separation between the pulses in the train
was 400 fs. As expected, the integrated pulse area of the
train is larger than the corresponding area of a single pulse
with the same total energy. The difference stems from the
different scaling of the pulse area and pulse energy with the
field amplitude (first and second power, respectively), re-
sulting in the smaller period of Rabi oscillations for the
piecewise excitation.
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FIG. 3 (color online). (a) Experimental setup. Ion signal is
measured for each excitation pulse (wide blue) followed by an
ionizing probe (narrow red); (b) Amplitude (solid blue line) and
phase (dashed red line) mask for generating a train of 9 pulses
from a transform-limited pulse (dash-dotted black line).
(c) FROG retrieval for the above pulse train with the temporal
field amplitude (solid blue) and phase (dashed red), compared
with the target quadratic phase of the pulses, �k (black dots). All
amplitudes are shown in arbitrary units.

PRL 100, 103004 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
14 MARCH 2008

103004-3



When either continuous or piecewise chirp is applied to
a single excitation pulse or a series of pulses, respectively,
the amount of excited Rb atoms ceases to oscillate with the
pulse energy. In both cases it saturates at the maximum
value and becomes insensitive to the excitation field
strength in the typical AP way [red circles in Figs. 4(a)
and 4(b)]. We attribute the decay of both the amplitude of
the Rabi oscillations and the saturated signal to the weak
prepulse generated by our laser system 3 ns prior to the
main pulse. To demonstrate the significance of the qua-
dratic phase in the piecewise excitation, Fig. 4(b) also
shows one example of the observed signal for a pulse train
with randomly chosen �k (black crosses). Different sets of
random �k produced different shapes of the energy depen-
dence, but none of them resulted in the AP-like saturation
of the population of the excited state close to the maximum
value.

The stability of the adiabatic passage is reflected in the
dependence of the transfer efficiency on the magnitude of
the chirp. In both the continuous and piecewise scheme, we
set the unchirped pulse area to 2� (energy of 0.31 and
0:07 �J, respectively). The result of scanning the conven-
tional chirp from �104 to �104 fs2 is similar to scanning
the piecewise chirp �� between �1:5 and �1:5 radians,

attesting to the similar mechanisms of the two processes.
Note the decay of the excited state population at j ��j>
1:5 rad in plot (d), caused by the breakdown of the piece-
wise adiabaticity due to the increasingly high phase incre-
ments from pulse to pulse in the pulse train. Figure 4 also
shows the results of numerical simulations. The only fitting
parameter was the area of the excitation beam. FROG
traces were used to define the temporal profile of the
pulses.

Unlike the adiabatic transfer with continuously chirped
pulses, PAP can be easily generalized to a wide class of
cases. One can consider replacing states j1i or j2i by wave
packets composed of many individual eigenstates, with the
population transfer executed with a train of pulses sepa-
rated in time by the wave packet’s vibrational period. The
ability to control the shape of the wave packet by shaping
the pulses in the train positions PAP as a powerful tool in
controlling molecular dynamics.
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FIG. 4 (color online). Measured (dots) and calculated (lines)
population of the excited state for a single pulse (a),(c) and a
train of 7 pulses (b),(d). In (a) and (b), the efficiency of the
population transfer is shown as a function of the integrated pulse
energy. Blue diamonds and solid lines represent Rabi oscilla-
tions; red circles and dashed lines correspond to continuously (a)
and piecewise (b) chirped excitation with � � 20 103 fs2 and
�� � 1 radian, respectively. Black crosses in (b) represent an
example of random distribution of phases �k. In (c) and (d), the
efficiency of the population transfer is shown as a function of the
continuous and piecewise chirp, respectively. In both cases, the
energy of the excitation field corresponds to the first minimum
of the respective Rabi oscillation. Experimental signals on all
four plots are normalized to the maximum of Rabi oscillations in
plot (a).
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