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We investigate the creation of highly entangled ground states in a system of three exchange-coupled
qubits arranged in a ring geometry. Suitable magnetic field configurations yielding approximate
Greenberger-Horne-Zeilinger and exact W ground states are identified. The entanglement in the system
is studied at finite temperature in terms of the mixed-state tangle 7. By generalizing a conjugate gradient
optimization algorithm originally developed to evaluate the entanglement of formation, we demonstrate
that 7 can be calculated efficiently and with high precision. We identify the parameter regime for which
the equilibrium entanglement of the tripartite system reaches its maximum.
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Entangled quantum systems have been the focus of
numerous theoretical and experimental investigations [1-
3]. In particular, entanglement has been identified as the
primary resource for quantum computation and communi-
cation [4]. Compared to the case of a bipartite system,
multipartite entanglement exhibits various new features.
Notably, there are two different equivalence classes of
genuine three-qubit entanglement [3], the representa-
tives being any one of the two maximally entangled
Greenberger-Horne-Zeilinger (GHZ) states [2] |GHZ*) =
(1111 = 11))/+/2 on the one hand and the W state [3]
W) = (I111) + |111) + |111)/+/3 on the other. The ability
to realize both representatives in real physical systems is
thus of high importance in the study of genuine tripartite
entanglement. Particularly interesting is the GHZ state, as
it represents the strongest quantum correlations possible in
a system of three qubits. Furthermore, it is equivalent to the
three-qubit cluster state used in one-way quantum compu-
tation [5]. It is favorable to obtain the GHZ and W states as
the eigenstate of a suitable system, rather than by engineer-
ing them using quantum gates. In this Letter, we demon-
strate the possibility of obtaining approximate GHZ and
exact W states as the ground state (GS) of three spin qubits
in a ring geometry coupled via an anisotropic Heisenberg
interaction. The use of quantum gates is therefore not
required. Rather, the desired states are achieved merely
by cooling down to sufficiently low temperatures. We state
all our results in terms of the exchange coupling strengths
in order to keep our proposal open to a broad set of possible
implementations of the qubits. We remark that, while
Heisenberg models have been studied frequently in the
context of entanglement [6] (also with respect to entangled
eigenstates [7]), this is the first time that highly entangled
states are reported as the nondegenerate GS of three
exchange-coupled qubits. Our study inevitably involves
the issue of quantifying entanglement [8§—12]: At finite
temperatures, the mixing of the GS with excited states
forces us to evaluate a mixed-state entanglement measure
(EM) in order to study the entanglement in the system
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meaningfully. Computationally, this is a rather formidable
task. We generalize a numerical scheme that has originally
been developed to compute the entanglement of formation
(EOF) [10,13]. Our scheme can be used to evaluate any
mixed-state EM defined as a so-called convex roof [14].

Model. —We assume that three spins S;, with § = 1/2,
are located at the corners i = 1, 2, 3 of an equilateral
triangle lying in the xy plane. Their interaction is described
by the anisotropic Heisenberg Hamiltonian
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where S4 = S,. Here, J,, and J, are the in- and out-of-
plane exchange coupling constants, respectively, and H; =
33, b, - S; denotes the Zeeman coupling of the spins S; to
the externally applied magnetic fields b; at the sites i [15].
We now seek a configuration of b;’s yielding a highly
entangled GHZ- or W-type ground state. Finite-
temperature effects will then be studied in a second step.
Ground-state properties.—We first consider isotropic
exchange couplings, ie., J,, =J, =J. For b; =0, we
naturally find two fourfold-degenerate eigenspaces due to
the high symmetry of the system. For J > 0, i.e., ferro-
magnetic coupling, the ground-state quadruplet is spanned
by the two GHZ states |GHZ™), the W and the spin-flipped
W state. Appropriately chosen magnetic fields allow one,
however, to split off an approximate GHZ state from this
degenerate eigenspace. To identify the optimal field ge-
ometry, we first observe that the two states |GHZ™) have
the form of a tunnel doublet. If we thus find a set of b;’s,
which, in the classical spin system, results in precisely two
degenerate minima for the configurations 111 and ||| with an
energy barrier in between, quantum tunneling will yield the
desired states. In order to single out exactly the two direc-
tions perpendicular to the xy plane, the magnetic fields
must be in plane, be of the same strength, and sum to zero.
This immediately implies that successive directions of the
fields must differ by an angle of 277/3 from each other. We
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choose the fields to point radially outwards, although any
other configuration possessing the required symmetry is
equivalent. However, this setup is experimentally most
feasible, e.g., by placing a bar magnet below the center
of the sample (in the case of a solid state implementation).
In order to favor parallel spin configurations we consider
the regime where J > b, b = |b,;| being the Zeeman en-
ergy. We may thus assume that for given mean spherical
angles ¥ (zenith) and @ (azimuth), the orientation of each
spin will deviate from these values only by a small amount.
Expanding the classical energy E. (3, @) corresponding to
Eq. (1) to second order in these deviations and minimizing
with respect to them under the constraint that they sepa-
rately sum to zero yields

_ 1y
8

3
E.~ (3 + cos2d) + (béi) sin(3@)sin’d. (2)
This expression is minimal for d=0and 9 = T, repre-
senting the desired configurations. The paths in 9 with
lowest barrier height connecting these two minima are
found for values of @ = —7/6 + 27n/3 mod 27, n =
0, 1, 2, reflecting the rotational symmetry of the system.
The corresponding barrier height is approximately given
by [(b/J)* = (b/J)*/6]/4 [16].

Next we return to the quantum system. The Hamiltonian
(1) with isotropic exchange coupling J and radial magnetic
field can be diagonalized exactly. Expanding for b/J < 1,
the overlap probabilities of the exact ground state |0) with
|GHZ"),, and the exact first excited state [1) with
|GHZ ™), .., respectively, are identical to second order and
are given by |, (GHZ"|0)|* = |, , (GHZ™|D|* = 1 — { X
(b/J)? (“Lu.” indicates that the states are equivalent to
GHZ states via local unitary transformations). The associ-
ated energy splitting is given by AE,; = 2(b/J)3/3 (see
inset of Fig. 1). This confirms the above semiclassical
considerations in terms of tunnel doublets. Moreover, we
see that the GS can only approximate a GHZ state although
this approximation will turn out to be very good even at
finite temperatures where mixing with excited states addi-
tionally decreases the entanglement. Before discussing this
in greater detail, we study the ground state of the general
anisotropic case with J,, # J_ in the Hamiltonian (1).

When J,, # J, it is possible to generate highly en-
tangled states by applying a spatially uniform magnetic
field either perpendicular to or in the xy plane. Indeed, a
field along the z axis, i.e.,b; = be_,i = 1,2,3, withb >0
yields an exact W state as GS if J,, >0 and b <J,, — J,
(note that this implies the condition J,, > J). The optimal
Zeeman energy b, leading to the highest energy splitting
AE,, between the GS and the first excited state is given by
bopy = (Jyy — J)/2. This yields AE,, = 3J,,/2 if J, <
—2J,, and AE,, = (J,, — J.)/2 otherwise. The W state is
thus best realized by choosing b = b, together with a
temperature sufficiently small compared to AE. In order
to obtain a GHZ state, one has to apply an in-plane mag-
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FIG. 1 (color online). The tangle 7 of the system with isotropic
positive (ferromagnetic) coupling J and radial magnetic field as
a function of b/J for different temperatures T = 1074J/kg
(dashed line), 1073J/ky (dash-dotted line), 1072J/ky (dash-
dot-dotted line), and 5 X 1072J/ky (dotted line). Note the two-
fold influence of the temperature on 7: Although higher tem-
peratures reduce the maximally achievable entanglement, a
stabilizing effect is observed as well. A maximum in the tangle
is more robust against fluctuations in b at higher temperatures
due to the less rapid drop-off of 7 as b/J is reduced. Conversely,
7 of the approximate GHZ GS |GS) (T = 0, solid red line) shows
a discontinuity at b = 0, where 7(p) = 0. For b > 0, we find the
simple algebraic expression 7,(|GS)) = (3 — 8b/J)/C + 2//C,
where C = 9 + 4b(4b/J — 3)/J. Inset: Energy splitting AE
of the ground-state doublet as a function of b/J.

netic field b; = be,. In this case we find for J, >0,
—2J,<J,, <J., a situation similar to the one in the
case of isotropic coupling and radial magnetic field: The
GS converges to a GHZ state for vanishing field, but also
the energy difference to the first excited state goes to zero
in this limit.

Entanglement measure.—Below, we will quantitatively
study the effects of finite temperature 7 > 0 on the amount
of entanglement present in the system. For this purpose, we
evaluate a suitable mixed-state EM of the canonical density
matrix p of the system. The three-tangle, or simply tangle
7, (originally called residual entanglement), is an EM for
pure states |¢) € H, ® H, ® H; of three qubits. It
reads [11]

7,(19)) = 4 detTry3p, — CX(Tr3p,) — C*(Tryp,,),  (3)

where p, = [)(¢|, Tr; denotes the partial trace over sub-
system i, and C is the two-qubit concurrence [18]. The
tangle takes values between O and 1 and is maximal for
GHZ states. It is also known that 7, is an entanglement
monotone [3]. The generalization of pure-state monotones
to mixed states is given by the so-called convex roof
[9,14,19]. Accordingly, the mixed-state tangle 7 is defined
as

7(p) = inf Z PiTp(|¢i>)- C))

{pulNED(P) &
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Here, ©(p) denotes the set of all pure-state decomposi-
tions {p;, ¥}, of p, with Y| plwXehil = p, p; = 0,
S K pi =1,and K = R = rankp. The above definition of
7 ensures that 7(p) = 7,(|4)) if p = |¢X¢l, and that 7
itself is an entanglement monotone [9].

Numerical evaluation.—In order to tackle the optimiza-
tion problem in Eq. (4) numerically, the set of all pure-state
decompositions D(p) needs to be given in an explicitly
parametrized form. It is known [20,21] that every pure-
state decomposition {p;, [;)}X; of p is related to a com-
plex K X R matrix U satisfying the unitary constraint
Utu =1 RxR> 1.€., a matrix having orthonormal column
vectors [22]. In fact, the set of all such matrices, the so-
called Stiefel manifold St(K, R), provides a complete pa-
rametrization of all pure-state = decompositions
{pi [y}, € D(p) of p with fixed cardinality K. The
minimization problem in Eq. (4) can thus be rewritten as

flp) =min inf KU, p), 5)

K=R UESHK,R)

where in our case / is the sum over the weighted pure-state
tangles with probabilities and state vectors obtained from p
via the matrix U. Problems of this kind are considered to be
extremely difficult to solve in general [8]. We have per-
formed the minimization over the Stiefel manifold numeri-
cally using the method described below. We have found
that the thereby obtained values converge quickly as K is
increased, and have thus fixed K = R + 4 throughout all of
our calculations, yielding an accuracy that is by far suffi-
cient for our purpose (note that decompositions with
smaller cardinality are contained as well). The numerical
method we used is a generalization of the conjugate gra-
dient algorithm presented in Ref. [13]. It is, however, only
suited for searching over the unitary manifold St(K, K). At
the cost of overparametrizing the search space, we have to
minimize over K X K matrices using only the first R
columns. The iterative algorithm builds conjugate search
directions X (skew-Hermitian K X K matrices) from the
gradient G at the current iteration point U and the previous
search direction using a modified Polak-Ribi¢re update
formula. A line search along the geodesic g(¢) =
U exp(tX) going through U in direction X is performed
in every step. In Ref. [13], an analytical expression for the
gradient G is given in the case where f is the EOF. The
algorithm is, however, also applicable to a generic convex-
roof EM f of the form (5). We find the matrix elements G j;
of the general gradient G to be

Gix = Ay — Ag)/2 +1(Sy + Siy)/2, (6)
where
Ay = 0h_ Reu,. + ImU 7
i ;(aReUik 7 9ImU;, ”>’
K
oh oh

Sy = ReU; — — " ImU,;). (8
ik ,._Zl<almU,~k YU T gReU, ”> ®)

The derivatives of & with respect to the real and imaginary
parts of U;;, ReU;;, and ImU;, respectively, are taken at U
and can be evaluated numerically using finite differences.
We have tested our implementation by comparing our
numerical results to known analytical results. The maximal
encountered absolute error was smaller than 10~ for the
EOF of isotropic 2 X 2 states [23], 107! for 3 X 3 states,
and 10710 for the tangle of a GHZ/W mixture [19]. This
suggests that, although our method can provide only an
upper bound, this bound is very tight. It was shown only
recently that also a (typically tight) lower bound on any
entanglement monotone can be estimated using entangle-
ment witnesses [24,25]. This is an interesting subject that is
left for future research.

Finite temperature.—We return to the study of the three
qubits described by the Hamiltonian (1). Using the gener-
alized conjugate gradient algorithm, we are able to inves-
tigate the entanglement as a function of the temperature 7,
the magnetic field strength b and the exchange couplings
Jy, and J_ by calculating the mixed-state tangle 7(p),
where p = exp(—H/kgT)/Trexp(—H/kzT) is the ca-
nonical density matrix of the system. To our knowledge,
this is the first time that 7(p) has been evaluated for states
arising from a physical model. Our main goal now is to
maximize the entanglement as a function of b = |b,|, i.e.,
the Zeeman energy. For this purpose we consider only
GHZ states in the following, since our W ground states
are b independent (see above). In the system with isotropic
exchange coupling J > 0 and radial magnetic field, the
tangle 7 tends to zero for b/J — 0 due to the vanishing
energy splitting AE,; (see Fig. 1). We remark that this
behavior is discontinuous at 7 = 0, where 7(p) — 1 for
b/J — 0, but 7(p) = 0 at b = 0. With larger b/J, the GS
contributes dominantly to p but simultaneously deviates
increasingly from a GHZ state. The entanglement in the
system is therefore reduced (cf. solid line in Fig. 1). For a
given temperature, the maximal tangle 7, is therefore
obtained at a finite optimal value (b/J),, of the scaled
magnetic field strength as a trade-off between having a
highly entangled GS and separating the latter from excited
states in order to avoid the negative effects of mixing. For
low temperatures 7 < 10727 /kg, we numerically find the
power laws (b/J)gp = (kgT/J)* and 1 — 7, < (kgT/J)P
with the exponents a = 0.30 and 8 = 0.63. Specifically,
we obtain 7(p) =098 (0.92) for T =10"*J/kg
(10737 /kg) and b = 0.11J (0.21J). Apart from the effect
of reducing 7, finite temperatures also possess the ad-
vantageous feature of broadening the discontinuity of 7 at
T = 0 and b = 0, which makes 7,,,, more stable against
fluctuations of b around b, (see Fig. 1).

We finally come back to the general anisotropic model
(1) with J,, # J subject to a homogeneous in-plane mag-
netic field. In Fig. 2 we show the maximally achievable
tangle 7., (optimized with respect to b/J.) as a function
of temperature for various anisotropy ratios J,, /J. (where,
as before, J, > 0). Since we are interested in high values of
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FIG. 2 (color online). Top: Maximally achievable tangle 7,
in the anisotropic system (GHZ GS) with homogeneous in-plane
magnetic field and J, > 0 as a function of temperature for six
anisotropy ratios J,, /J. (see legend). The curves end at 7(p) =
1073, Bottom: The corresponding optimal values (b/J,)op Of the
scaled magnetic field strength b/J..

Tmax» an arbitrary but low cutoff was introduced in the
calculation at 7(p) = 107>, The lower panel of Fig. 2
depicts the corresponding optimal field values (5/J,)qp.
At low temperatures 7, a power-law dependence of
(b/J,)ope o0 T is observed, similar to the above isotropic
case. Note that a higher amount of entanglement can be
realized in systems with stronger anisotropies. For ex-
ample, for Ising coupling (J,,/J, = 0) we find 7(p) =
0.98 (0.89) for T =10"%J/kz (1073J/kg) and b =
0.080/, (0.16J,). At T =10"*J/ky but with J,,/J, =
0.9, still a very good value 7(p) = 0.90 is achieved for b =
0.016J,. We remark that still higher tangles are obtained
for negative (antiferromagnetic) J,, > —2J,. In this case,
the maximal tangle as a function of 7 decays even more
slowly than the curves displayed in the top panel of Fig. 2.

Possible implementations of the qubits include GaAs
and InAs quantum dots, InAs nanowires, or single-wall
carbon nanotubes. Assuming a typical value of [|J|~
1 meV [26,27], we obtain 7 = 0.9 at T = 10 mK and B =
2 T (assuming a g factor of |g| = 2). Ferromagnetic cou-
pling is achieved by operating the dots with more than one
electron per dot.
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