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We study a mixture of strongly interacting bosons and spinless fermions with on-site repulsion in a
three-dimensional optical lattice. For this purpose we develop and apply a generalized dynamical mean-
field theory, which is exact in infinite dimensions and reliably describes the full range from weak to strong
coupling. We restrict ourselves to half filling. For weak Bose-Fermi repulsion a supersolid forms, in which
bosonic superfluidity coexists with charge-density wave order. For stronger interspecies repulsion the
bosons become localized while the charge-density wave order persists. The system is unstable against
phase separation for weak repulsion among the bosons.
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Ultracold atomic gases confined in optical lattices pro-
vide a new laboratory for investigating quantum many-
body problems with high precision and tunability [1,2].
In this way new light can be shed on notoriously difficult
problems in condensed matter physics [3]. One of the
intriguing aspects of cold atoms is that the atomic quantum
statistics can be controlled. In particular, cold atomic gases
offer the possibility to realize mixtures of fermions and
bosons [4–8], recently also in an optical lattice [9,10]. It is
thus possible to create physical systems without analog in
conventional solid state physics.

An exotic quantum phase that has intrigued researchers
for a while is the supersolid with superfluid order, i.e.,
broken U�1� symmetry, and coexisting particle density
wave order. It is still an open question whether a supersolid
has been realized in recent experiments on 4He [11]. While
in single-component quantum gases supersolids can only
be stabilized by including nearest neighbor repulsion be-
tween the particles [12], they can be conveniently realized
in Bose-Fermi mixtures with on-site repulsion as we show
in this Letter. Earlier theoretical studies already suggested
that Bose-Fermi mixtures can be unstable against charge-
density wave (CDW) and supersolid order or phase sepa-
ration (PS). However, so far all theoretical approaches
either dealt with one-dimensional systems [13–19] or re-
lied on weak-coupling approximations [20–22].

Here we introduce and apply a generalized dynamical
mean-field theory (GDMFT) that treats this problem in a
fully nonperturbative way. In this method the fermions are
described by dynamical mean-field theory (DMFT) [23],
into which the bosons are incorporated by means of the
static Gutzwiller decoupling approximation [24] of the
hopping. This approach therefore reproduces the strong
coupling behavior of both the fermions and the bosons.
In particular it is able to describe the formation of a bosonic
Mott-insulator state for strong repulsion between the bo-
sons at integer filling. Here we restrict ourselves to half
filling for both the bosons and fermions (hnbi � hnfi �

1
2 ).

For weak interspecies repulsion we predict the formation
of a supersolid phase, in which the bosons form a super-
fluid with spatially modulated density and the fermions

form a CDW. For stronger repulsion between the bosons
and the fermions there is a first order phase transition to an
alternating Mott insulator (AMI) plus CDW, in which the
bosons become localized at every second lattice site while
the fermionic charge-density wave persists. For weak bo-
sonic repulsion we find an instability towards phase sepa-
ration. We depict all these different phases schematically
in Fig. 1.

A mixture of fermions and bosons in an optical lattice
can be described by the single-band Fermi-Bose Hubbard
model:

 H � �
X
hi;ji

ftfc
y
i cj � tbb

y
i bjg �

X
i

f�fn
f
i ��bn

b
i g

�
X
i

�
Ub

2
nbi �n

b
i � 1� �Ufbnbi n

f
i

�
; (1)

where cyi (byi ) is the fermionic (bosonic) creation operator
at site i, while nfi � cyi�ci� (nbi � byi bi) denotes the num-

FIG. 1 (color online). Schematic structure of different T � 0
phases of a spinless Bose-Fermi mixture in an optical lattice. The
dark (red) particles correspond to the fermions, while light
(cyan) particles denote the bosons. In both the supersolid and
the alternating Mott-insulator (AMI) phase the bosons and
fermions have an alternating density pattern as depicted in (a).
In the supersolid (b) the density oscillations are small and the
bosons are superfluid. In the AMI� CDW phase (c) the density
oscillations are large and the bosons are localized. The schematic
structure of phase separation is depicted in (d).
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ber operator and �f�b� the chemical potential for fermions
(bosons). Ub and Ufb are the on-site boson-boson and
fermion-boson interactions, respectively. hi; ji denotes
summation over nearest neighbors, and tf�b� is the tunnel-
ing amplitude for fermions (bosons).

Following the very successful DMFT [23] and
Gutzwiller [24] schemes, which are exact in infinite di-
mensions, we consider the infinite-dimensional limit (d!
1) of this model first, which is expected to be a good
approximation to three spatial dimensions. In order to
retain a finite kinetic energy the hopping parameters are
rescaled as tf=

���
d
p

and tb=d. We then follow the standard
‘‘cavity derivation’’; i.e., we consider a single impurity site
and integrate out all other sites [23]. In the limit of infinite
dimensions the only terms that survive in the effective
action for the impurity site are the local terms, plus a
bosonic source field and a fermionic (Weiss) mean field.
The bosonic part corresponds to the Gutzwiller approxi-
mation, whereas the fermionic part corresponds to DMFT.
Therefore, the GDMFT employed in our calculation con-
sists of the DMFT algorithm for the fermions [23], com-
bined with Gutzwiller mean-field theory for the bosons.
Subsequently the action for the impurity site is mapped
onto a generalized single impurity Anderson model
(GSIAM). As usual, the impurity site is coupled to a non-
interacting fermionic bath, which provides a self-
consistent dynamical (Weiss) mean field [23]. In addition,
the GSIAM now also contains a bosonic degree of free-
dom, which is self-consistently coupled to the superfluid
order parameter, according to Gutzwiller mean-field theory
[24]. In summary, the GSIAM is described by the follow-
ing Hamiltonian, which allows for a two-sublattice struc-
ture:
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Here � is the sublattice index ( �� � ��), z is the lattice
coordination number, ’� � hb�i is the superfluid order
parameter, and Vk� are the fermionic hybridization matrix
elements. The hybridization function is defined as
���!� � �

P
kjVk�j

2��!� "k�. For convenience we per-
form our calculations on the Bethe lattice, which has a
semielliptic noninteracting density of states ��"� �
2
������������������
D2 � "2
p

=�D2. Here D � 2
���
z
p
tf is the noninteracting

fermionic half-bandwidth. In the following we take D as
the unit of energy. The fermionic DMFT self-consistency
relation on the Bethe lattice has the form ���!� �
�
4 A ���!� [23], where A��!� is the local fermionic interact-

ing (impurity) spectral function. To calculate A��!� and
’� � hb�i from the GSIAM (2) we use the nonperturba-
tive numerical renormalization group (NRG) technique
[25,26]. The resulting hybridization function as obtained
via the spectral function A��!� and the bosonic order
parameter ’� determines the new coefficients of the
GSIAM. This procedure is iterated until convergence is
reached. The GDMFT approach incorporates the local
correlations between bosons and fermions in a fully non-
perturbative fashion and thus reliably describes the full
range from weak to strong coupling. In our calculations
we use a cutoff for the number of bosons on the impurity
site, which can be kept low due to the repulsive interac-
tions, which suppress multiple occupancy of the bosons.
All of the results presented here are obtained at T � 0.

The self-consistent GDMFT procedure as described
above can yield multiple stable solutions. To find the
ground state of the system, we need to compare the energy
of these solutions, which is given by
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where H K=N �
1
2

P
�hH

�
f i � ztb’�1’1 and the indices

�1 correspond to the two different sublattices. To calculate
the fermionic part of the kinetic energy we use the same
approach as for an antiferromagnetic state, which also has
a two-sublattice structure [23,27]:
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where ��"� is the fermionic noninteracting density of states

FIG. 2 (color online). Phase diagram of the Fermi-Bose
Hubbard model with spinless fermions and hard-core bosons at
half filling. We identify the supersolid phase (below solid red
line), the AMI phase with charge-density wave (CDW) (above
solid red line), and the coexistence region (between the solid red
line and dashed blue line). Energies are expressed in units of the
noninteracting fermionic half-bandwidth D.
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and A�";!� � � 1
� Im 1���������

��1�1

p
�"

is the spectral function,

with �� � !��f ����!� (� � �1). We calculate the
self-energy following [28] ��!� � UfbF�!�=G�!� where
G�!� is the fermionic Green’s function and F�!� �
hfbybfyi!.

We now first apply our GDMFT procedure to the limit
Ub � 1, i.e., hard-core bosons. We fix the number of
bosons and fermions at half filling (hnbi � hnfi �

1
2 ),

which makes the system particle-hole symmetric.
Without loss of generality, calculations are performed for
repulsive Fermi-Bose interactions: Ufb > 0. The case of
attractive interactions will be inferred later on with the help
of a (staggered) particle-hole transformation. Since we take
the noninteracting fermionic half-bandwidth D as the unit
of energy, the bosonic hopping amplitude tb and the inter-
action Ufb are the remaining adjustable parameters.

Our results are shown in the Ufb � tb phase diagram in
Fig. 2. For weak repulsion between fermions and bosons
we obtain a supersolid phase with a small CDW amplitude
(see Fig. 3). For strong interactions between fermions and
bosons we obtain a bosonic AMI together with a CDW of
the fermions. In this phase the fermionic CDW amplitude
j�Nfj is almost maximal, while the bosons are completely
localized and have a CDW amplitude equal to j�Nbj �
0:5. Taking into account virtual bosonic particle-hole ex-
citations beyond Gutzwiller would however lead to a
slightly smaller bosonic CDW amplitude. This transition
is very similar to the one for bosons in a superlattice: upon
increasing the potential difference between the sublattices
there is a Mott-insulator transition at half filling [29]. For
intermediate coupling both solutions are stable within
GDMFT. To determine which of them corresponds to the
ground state, we have compared their energies as given by

Eq. (3). We find that the supersolid phase always has the
lower energy; i.e., the ground state is the supersolid. The
coexistence of GDMFT solutions is a strong indication for
a first order phase transition (at T � 0). As shown in Fig. 2,
the critical value Uc

fb for the phase transition from the
supersolid into the AMI phase increases with the bosonic
tunneling amplitude.

The fermionic spectrum is always gapped. Spectral den-
sities are shown in Fig. 4. The gap is small for the super-
solid phase, but at the transition point there is a jump in the
gap and in the AMI phase it becomes of the order of the
noninteracting half-bandwidth D (see inset of Fig. 4). This
implies that the latter phase will be more stable against
finite temperature effects.

So far we have considered repulsive interactions be-
tween bosons and fermions. To see what happens for
attractive interactions Ufb < 0 we apply a staggered
particle-hole transformation to the fermions, ci !
��1�icyi , which leads to a minus sign in front of the
Bose-Fermi interaction term. This implies that for attrac-
tive interactions we obtain the same quantum phases, but
the CDW oscillations are now in phase instead of out of
phase as for repulsive interactions.

We now proceed by considering finite interactions be-
tween the bosons, i.e., relaxing the hard-core condition, but
still assume the fermions and the boson to be half filled. We
consider the case that the bosons are slightly slower than
the fermions: ztb � 0:4D. Our findings are summarized in
the Ufb–Ub phase diagram in Fig. 5. For strong bosonic
repulsion Ub the results are similar to the ones found for
hard-core bosons: we find a supersolid for weak Ufb and
the alternating Mott-insulator phase for strongerUfb, sepa-
rated by a first order transition. The critical interspecies
repulsion at the transition between supersolid and the AMI
phase increases when the value of the bosonic repulsionUb
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FIG. 3 (color online). Amplitude of the CDW for fermions
(blue circles, solid line) and hard-core bosons (red crosses,
dashed line) as a function of the fermion-boson interaction
Ufb for the case when ztb � 0:4D. In the inset we plot the
bosonic superfluid order parameter as a function of the fermion-
boson interaction Ufb.
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FIG. 4 (color online). Fermionic spectral function in a mixture
with hard-core bosons and ztb � 0:4D for different values of
Ufb. In the inset we plot the size of the gap in units of D as a
function of Ufb. The gap is defined by the frequencies for which
the spectral function has half its maximal value.
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is reduced. This is because the supersolid state acquires a
lower energy when Ub is decreased, whereas the energy of
the AMI phase remains the same. For weak interactions Ub
among the bosons, the half filled state is unstable towards
PS. In this parameter regime we do not find a converged
GDMFT solution where the bosons and the fermions are
half filled. To establish the occurrence of phase separation
we also performed calculations away from half filling. We
found a pronounced jump in the density as a function of the
chemical potential and coexisting solutions close to the
position of the jump. Moreover, we observed that for
strong interspecies repulsion the phase separation is always
complete. This allowed us to compare the energies of the
PS and AMI states, which yields the dash-dotted (green)
line as depicted in Fig. 5. We have checked that comparison
of energies yields the same boundary for phase separation
as deduced from the disappearance of a converged homo-
geneous GDMFT solution.

Also in this case we can infer the effect of attractive
Bose-Fermi interactions by performing a staggered
particle-hole transformation for the fermions. Phase sepa-
ration turns then into phase separation of bosons and
fermionic holes, which is equivalent to clustering of the
bosonic and fermionic particles. So for weak repulsion Ub
among the bosons a system with attractive interspecies
interaction Ufb will maximize its density in part of the
system, leaving the rest unoccupied.

In conclusion, we have studied a mixture of half filled
spinless fermions and bosons in a three-dimensional opti-
cal lattice at zero temperature. We established the presence
of a supersolid at weak Bose-Fermi repulsion. For strong

interspecies interaction a first order phase transition occurs
towards a state where the bosons are localized and form an
alternating Mott insulator. An instability towards phase
separation was observed for weak interaction among the
bosons.
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FIG. 5 (color online). Phase diagram of the Fermi-Bose
Hubbard model with spinless fermions. Both fermions and
bosons are half filled and ztb � 0:4D. Stable phases are the
supersolid (left of the solid red line and above the dash-dotted
green line) and the AMI phase with CDW (right of the solid red
line and above the dash-dotted green line). In the area between
the solid red line and the dashed blue line both solutions are
stable. Below the dash-dotted green line phase separation (PS)
takes place.
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